精英家教网 > 高中数学 > 题目详情
18.已知$sinα=\frac{4}{5}$,$sinβ=-\frac{5}{13}$,$α∈({\frac{π}{2},π})$,$β∈({π,\frac{3}{2}π})$;求$sin({\frac{π}{4}-α})$,tan(α-β)的值.

分析 根据题意利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,两角和差的正切、正弦公式,求得要求式子的值

解答 解:∵$sinα=\frac{4}{5}$,$sinβ=-\frac{5}{13}$,$α∈({\frac{π}{2},π})$,$β∈({π,\frac{3}{2}π})$,∴cosα=-$\sqrt{{1-sin}^{2}α}$=-$\frac{3}{5}$,cosβ=-$\sqrt{{1-sin}^{2}β}$=-$\frac{12}{13}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,tanβ=$\frac{sinβ}{cosβ}$=$\frac{5}{12}$,
∴$sin({\frac{π}{4}-α})$=sin$\frac{π}{4}$cosα-cos$\frac{π}{4}$sinα=$\frac{\sqrt{2}}{2}•$(-$\frac{3}{5}$)-$\frac{\sqrt{2}}{2}$•$\frac{4}{5}$=-$\frac{7\sqrt{2}}{10}$,tan(α-β)=$\frac{tanα-tanβ}{1+tanα•tanβ}$=$\frac{-\frac{4}{3}-\frac{5}{12}}{1+(-\frac{4}{3})•\frac{5}{12}}$=-$\frac{63}{16}$.

点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,两角差的正切、正弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(1)已知f(x)=$\frac{sin(2π-x)•cos(\frac{3}{2}π+x)}{cos(3π-x)•sin(\frac{11}{2}π-x)}$,求f(-$\frac{21π}{4}$)的值.
(2)已知-π<x<0,sin(π+x)-cosx=-$\frac{1}{5}$.
①求sinx-cosx的值;
②求$\frac{sin2x+2sin2x}{1-tanx}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正三角形ABC的边长为2,点D是边BC上一动点,点D到AB、AC的距离分别为x、y,则xy的最大值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.乒乓球队的8名队员中有3名主力队员,要派5名队员参加团体比赛,其中的3名主力队员安排在第一、第三、第五位置,其余5名队员选2名安排在第二、第四位置,那么不同的出场安排共有120种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知中心在原点的双曲线C的右焦点为(2,0),右顶点为$({\sqrt{3},0})$,
(1)求双曲线C的标准方程;
(2)求双曲线C的离心率;
(3)求双曲线C的渐近线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若命题p的逆命题是q,否命题是r,则命题q是命题r的(  )
A.逆命题B.否命题C.逆否命题D.不等价命题

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知圆M:(x-2a)2+y2=4a2与双曲线C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1$(a>0,b>0)交于A、B两点,点D为圆M与x轴正半轴的交点,点E为双曲线C的左顶点,若四边形EADB为菱形,则双曲线C的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.3C.$\frac{\sqrt{10}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设{an}为递减等比数列,a1+a2=11,a1•a2=10则lga1+lga2+…+lga10=-35.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某班有学生55人,现将所有学生按1,2,3,…,55,随机编号,若采用系统抽样的方法抽取一个容量为5的样本,已知编号为6,a,28,b,50的学生在样本中,则a+b=(  )
A.52B.54C.55D.56

查看答案和解析>>

同步练习册答案