精英家教网 > 高中数学 > 题目详情
10.已知数列$\left\{{a_n}\right\},{a_1}=2,{a_n}=\frac{1}{n}+({1-\frac{1}{n}}){a_{n-1}}({n≥2,n∈{N^*}})$.
(1)证明:数列{nan}是等差数列;
(2)记${b_n}=\frac{1}{{{n^2}{a_n}}}$,{bn}的前n项和为Sn,证明:Sn<1.

分析 (1)数列$\left\{{a_n}\right\},{a_1}=2,{a_n}=\frac{1}{n}+({1-\frac{1}{n}}){a_{n-1}}({n≥2,n∈{N^*}})$,可得nan=(n-1)an-1+1,即nan-(n-1)an-1=1,即可证明.
(2)由(1)可得:nan=2+(n-1),可得n2an=n(n+1),bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.利用“裂项求和”方法与数列的单调性即可得出.

解答 证明:(1)∵数列$\left\{{a_n}\right\},{a_1}=2,{a_n}=\frac{1}{n}+({1-\frac{1}{n}}){a_{n-1}}({n≥2,n∈{N^*}})$,∴nan=(n-1)an-1+1,即nan-(n-1)an-1=1,
∴数列{nan}是等差数列,首项为2,公差为1.
(2)由(1)可得:nan=2+(n-1),可得n2an=n(n+1).∴bn=$\frac{1}{n(n+1)}$=$\frac{1}{n}-\frac{1}{n+1}$.
∴{bn}的前n项和Sn=$(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n}-\frac{1}{n+1})$=1-$\frac{1}{n+1}$<1.

点评 本题考查了数列递推关系、等差数列的定义与通项公式、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设不等式组$\left\{\begin{array}{l}{x≥1}\\{x-y≤0}\\{x+y≤4}\end{array}\right.$,表示的平面区域为M,若直线y=kx-2上存在M内的点,则实数k的取值范围是(  )
A.[1,3]B.(-∞,1]∪[3,+∞)C.[2,5]D.(-∞,2]∪[5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.为弘扬传统文化,某校举行诗词大赛.经过层层选拔,最终甲乙两人进入决赛,争夺冠亚军.决赛规则如下:①比赛共设有五道题;②比赛前两人答题的先后顺序通过抽签决定后,双方轮流答题,每次回答一道,;③若答对,自己得1分;若答错,则对方得1分;④先得 3 分者获胜.已知甲、乙答对每道题的概率分别为$\frac{2}{3}$和$\frac{3}{4}$,且每次答题的结果相互独立.
(Ⅰ)若乙先答题,求甲3:0获胜的概率;
(Ⅱ)若甲先答题,记乙所得分数为 X,求X的分布列和数学期望 EX.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=x-alnx+a+\frac{b}{x}$.
(1)若曲线y=f(x)在点(1,f(1))处的切线过点(4,-2),且x=2时,y=f(x)有极值,求实数a,b的值;
(2)若函数g(x)=x•f(x)在区间$[\frac{1}{e},{e^2}]$上单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f′(x)是定义(0,2π)在上的函数f(x)的导函数,f(x)=f(2π-x),当0<x<π时,若f(x)sinx-f′(x)cosx<0,a=$\frac{1}{2}$f($\frac{π}{3}$),b=0,c=-$\frac{{\sqrt{3}}}{2}$f($\frac{7π}{6}$),则(  )
A.a<b<cB.b<c<aC.c<b<aD.c<a<b

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.某班有50名学生,一次数学考试的成绩ξ服从正态分布N(110,102),已知P(100≤ξ≤110)=0.36,估计该班学生数学成绩在120分以上的有7人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知△ABC是边长为1的等边三角形,则$(\overrightarrow{AB}-2\overrightarrow{BC})•(\overrightarrow{BC}+2\overrightarrow{CA})$=(  )
A.-2B.$-\frac{3}{2}$C.1D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若圆x2+y2-x+my-4=0关于直线x-y=0对称,动点P(a,b)在不等式组$\left\{\begin{array}{l}x+y-2≤0\\ x+my≥0\\ y≥0\end{array}\right.$表示的平面区域内部及边界上运动,则$z=\frac{b-2}{a-1}$的取值范围是(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.关于函数的对称性有如下结论:对于给定的函数y=f(x),x∈D,如果对于任意的x∈D都有f(a+x)+f(a-x)=2b成立(a,b为常数),则函数f(x)关于点(a,b)对称.
(1)用题设中的结论证明:函数f(x)=$\frac{-2x+1}{x-3}$关于点(3,-2);
(2)若函数f(x)既关于点(2,0)对称,又关于点(-2,1)对称,且当x∈(2,6)时,f(x)=2x+3x,求:
①f(-5)的值;
②当x∈(8k-2,8k+2),k∈Z时,f(x)的表达式.

查看答案和解析>>

同步练习册答案