1£®ÎªºëÑﴫͳÎÄ»¯£¬Ä³Ð£¾ÙÐÐÊ«´Ê´óÈü£®¾­¹ý²ã²ãÑ¡°Î£¬×îÖÕ¼×ÒÒÁ½È˽øÈë¾öÈü£¬Õù¶á¹ÚÑǾü£®¾öÈü¹æÔòÈçÏ£º¢Ù±ÈÈü¹²ÉèÓÐÎåµÀÌ⣻¢Ú±ÈÈüǰÁ½ÈË´ðÌâµÄÏȺó˳Ðòͨ¹ý³éÇ©¾ö¶¨ºó£¬Ë«·½ÂÖÁ÷´ðÌ⣬ÿ´Î»Ø´ðÒ»µÀ£¬£»¢ÛÈô´ð¶Ô£¬×Ô¼ºµÃ1·Ö£»Èô´ð´í£¬Ôò¶Ô·½µÃ1·Ö£»¢ÜÏȵà3 ·ÖÕß»ñʤ£®ÒÑÖª¼×¡¢ÒÒ´ð¶ÔÿµÀÌâµÄ¸ÅÂÊ·Ö±ðΪ$\frac{2}{3}$ºÍ$\frac{3}{4}$£¬ÇÒÿ´Î´ðÌâµÄ½á¹ûÏ໥¶ÀÁ¢£®
£¨¢ñ£©ÈôÒÒÏÈ´ðÌ⣬Çó¼×3£º0»ñʤµÄ¸ÅÂÊ£»
£¨¢ò£©Èô¼×ÏÈ´ðÌ⣬¼ÇÒÒËùµÃ·ÖÊýΪ X£¬ÇóXµÄ·Ö²¼ÁкÍÊýѧÆÚÍû EX£®

·ÖÎö £¨I£©Éè¡°ÒÒÏÈ´ðÌ⣬¼×3£º0»ñʤ¡±ÎªÊ¼þA£¬Ö»ÄÜÊÇ´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í2µÀÌ⣬¼×´ð¶Ô1µÀÌ⣮
¼´¿ÉµÃ³ö£®
£¨II£©ÓÉÌâÒâ¿ÉµÃ£ºXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
¢ÙX=0ʱ£¬Ôò´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í1µÀÌ⣬¼×´ð¶Ô2µÀÌ⣬´Ëʱ¼×µÃ3·Ö£¬ÒÒµÃ0·Ö£¬¼´¿ÉµÃ³ö£®
¢ÚX=1£¬Ôò´ðÍê4µÀÌâ½áÊø£¬´Ëʱ¹²ÓÐÒ»ÏÂ3ÖÖÇé¿ö£º¼×´íÒÒ´í¼×¶ÔÒÒ´í£»¼×¶ÔÒÒ´í¼×´íÒÒ´í£»¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ´í£®
¢ÛX=2£¬ÔòµÚ5´Î±ØÐëÊǼ״ð¶Ô£¬´Ëʱ¹²ÓÐÒ»ÏÂ6ÖÖÇé¿ö£º¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×¶ÔÒÒ¶Ô¼×´íÒÒ´í¼×¶Ô£»¼×¶ÔÒÒ´í¼×´íÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ¶Ô¼×¶ÔÒÒ´í¼×¶Ô£»¼×´íÒÒ´í¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ´í¼×´íÒÒ´í¼×¶Ô£®
¢ÜX=3£¬P£¨X=3£©=1-P£¨X=0£©-P£¨X=1£©-P£¨X=2£©£®

½â´ð ½â£º£¨I£©Éè¡°ÒÒÏÈ´ðÌ⣬¼×3£º0»ñʤ¡±ÎªÊ¼þA£¬Ö»ÄÜÊÇ´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í2µÀÌ⣬¼×´ð¶Ô1µÀÌ⣮
ÔòP1=$£¨1-\frac{3}{4}£©^{2}¡Á\frac{2}{3}$=$\frac{1}{24}$£®
£¨II£©ÓÉÌâÒâ¿ÉµÃ£ºXµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£®
¢ÙX=0ʱ£¬Ôò´ðÍê3µÀÌâ½áÊø£¬´ËʱÒÒ´ð´í1µÀÌ⣬¼×´ð¶Ô2µÀÌ⣬´Ëʱ¼×µÃ3·Ö£¬ÒÒµÃ0·Ö£¬ÔòP£¨X=0£©=$\frac{2}{3}¡Á$$£¨1-\frac{3}{4}£©$¡Á$\frac{2}{3}$=$\frac{1}{9}$£®
¢ÚX=1£¬Ôò´ðÍê4µÀÌâ½áÊø£¬´Ëʱ¹²ÓÐÒ»ÏÂ3ÖÖÇé¿ö£º¼×´íÒÒ´í¼×¶ÔÒÒ´í£»¼×¶ÔÒÒ´í¼×´íÒÒ´í£»
¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ´í£®
¡àP£¨X=1£©=£¨1-$\frac{2}{3}$£©¡Á£¨1-$\frac{3}{4}$£©¡Á$\frac{2}{3}$¡Á£¨1-$\frac{3}{4}$£©+$\frac{2}{3}$¡Á£¨1-$\frac{3}{4}$£©¡Á$£¨1-\frac{2}{3}£©$¡Á£¨1-$\frac{3}{4}$£©+$\frac{2}{3}$¡Á$\frac{3}{4}$¡Á$\frac{2}{3}$¡Á£¨1-$\frac{3}{4}$£©=$\frac{1}{9}$£®
¢ÛX=2£¬ÔòµÚ5´Î±ØÐëÊǼ״ð¶Ô£¬´Ëʱ¹²ÓÐÒ»ÏÂ6ÖÖÇé¿ö£º¼×¶ÔÒÒ¶Ô¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×¶ÔÒÒ¶Ô¼×´íÒÒ´í¼×¶Ô£»¼×¶ÔÒÒ´í¼×´íÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ¶Ô¼×¶ÔÒÒ´í¼×¶Ô£»¼×´íÒÒ´í¼×¶ÔÒÒ¶Ô¼×¶Ô£»¼×´íÒÒ´í¼×´íÒÒ´í¼×¶Ô£®
¡àP£¨X=2£©=$\frac{2}{3}¡Á£¨1-\frac{2}{3}£©¡Á\frac{3}{4}¡Á£¨1-\frac{3}{4}£©¡Á\frac{2}{3}$¡Á4+$£¨\frac{2}{3}£©^{3}¡Á£¨\frac{3}{4}£©^{2}$+$£¨1-\frac{2}{3}£©^{2}¡Á£¨1-\frac{3}{4}£©^{2}¡Á\frac{2}{3}$=$\frac{61}{216}$£®
¢ÜX=3£¬P£¨X=3£©=1-P£¨X=0£©-P£¨X=1£©-P£¨X=2£©=1-$\frac{1}{9}$-$\frac{1}{9}$-$\frac{61}{216}$=$\frac{107}{216}$£®
Æä·Ö²¼ÁÐΪ£º

 X 0 1 2 3
 P $\frac{1}{9}$ $\frac{1}{9}$$\frac{61}{216}$ $\frac{107}{216}$
E£¨X£©=0+$1¡Á\frac{1}{9}$+2¡Á$\frac{61}{216}$+3¡Á$\frac{107}{216}$=$\frac{467}{216}$£®

µãÆÀ ±¾Ì⿼²éÁËÏ໥¶ÀÁ¢Ó뻥³âʼþµÄ¸ÅÂʼÆË㹫ʽ¡¢Ï໥¶ÔÁ¢Ê¼þµÄ¸ÅÂʼÆË㹫ʽ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼Áм°ÆäÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Éè${£¨{2{x^2}+1}£©^5}={a_0}+{a_1}{x^2}+{a_2}{x^4}+¡­+{a_5}{x^{10}}£¬Ôò{a_3}$µÄֵΪ80£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÒ»¸öÕý¡÷ABCµÄ±ß³¤Îª6cm£¬µãDµ½¡÷ABC¸÷¶¥µãµÄ¾àÀë¶¼ÊÇ4cm£®Çó£º
£¨1£©µãDµ½¡÷ABCËùÔÚÆ½ÃæµÄ¾àÀ룻
£¨2£©DBÓëÆ½ÃæABCËù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©¶þÃæ½ÇD-BC-AµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÊýÁÐ{an}µÄǰnÏîºÍ¼ÇΪSn£¬a1=1£¬an+1=2Sn+1£¨n¡Ý1£¬n¡ÊN*}£¬ÔòÊýÁÐ{an}µÄͨÏʽan=3n-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=$\sqrt{3}$sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬-$\frac{¦Ð}{2}$£¼¦Õ£¼$\frac{¦Ð}{2}$£©£¬A£¨$\frac{1}{3}$£¬0£©Îªf£¨x£©Í¼ÏóµÄ¶Ô³ÆÖÐÐÄ£¬B£¬CÊǸÃͼÏóÉÏÏàÁÚµÄ×î¸ßµãºÍ×îµÍµã£¬ÈôBC=4£¬Ôòf£¨x£©µÄµ¥µ÷µÝÔöÇø¼äÊÇ£¨¡¡¡¡£©
A£®£¨2k-$\frac{2}{3}$£¬2k+$\frac{4}{3}$£©£¬k¡ÊZB£®£¨2k¦Ð-$\frac{2}{3}$¦Ð£¬2k¦Ð+$\frac{4}{3}$¦Ð£©£¬k¡ÊZ
C£®£¨4k-$\frac{2}{3}$£¬4k+$\frac{4}{3}$£©£¬k¡ÊZD£®£¨4k¦Ð-$\frac{2}{3}$¦Ð£¬4k¦Ð+$\frac{4}{3}$¦Ð£©£¬k¡ÊZ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èôº¯Êýf£¨x£©Âú×ãf£¨x£©=x£¨f¡ä£¨x£©-lnx£©£¬ÇÒf£¨$\frac{1}{e}$£©=$\frac{1}{e}$£¬Ôòef£¨ex£©£¼f¡ä£¨$\frac{1}{e}$£©+1µÄ½â¼¯ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1£©B£®£¨-1£¬+¡Þ£©C£®£¨0£¬$\frac{1}{e}$£©D£®£¨$\frac{1}{e}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÅ×ÎïÏߵĶ¥µãÔÚ×ø±êÔ­µã£¬½¹µãFÔÚyÖáÕý°ëÖáÉÏ£¬¹ýµãFµÄÖ±Ïß½»Å×ÎïÏßÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄ³¤ÊÇ8£¬ABµÄÖе㵽xÖáµÄ¾àÀëÊÇ3£®
£¨1£©ÇóÅ×ÎïÏߵıê×¼·½³Ì£»
£¨2£©ÉèÖ±ÏßmÔÚyÖáÉϵĽؾàΪ6£¬ÇÒÓëÅ×ÎïÏß½»ÓÚP£¬QÁ½µã£¬Á¬½áQF²¢ÑÓ³¤½»Å×ÎïÏßµÄ×¼ÏßÓÚµãR£¬µ±Ö±ÏßPRÇ¡ÓëÅ×ÎïÏßÏàÇÐʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ$\left\{{a_n}\right\}£¬{a_1}=2£¬{a_n}=\frac{1}{n}+£¨{1-\frac{1}{n}}£©{a_{n-1}}£¨{n¡Ý2£¬n¡Ê{N^*}}£©$£®
£¨1£©Ö¤Ã÷£ºÊýÁÐ{nan}ÊǵȲîÊýÁУ»
£¨2£©¼Ç${b_n}=\frac{1}{{{n^2}{a_n}}}$£¬{bn}µÄǰnÏîºÍΪSn£¬Ö¤Ã÷£ºSn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èô¼¯ºÏA={-2£¬-1£¬0£¬1£¬2}£¬¼¯ºÏB={x|lg£¨x+1£©£¾0}£¬ÔòA¡ÉBµÈÓÚ£¨¡¡¡¡£©
A£®{-1£¬0£¬1£¬2}B£®{-1£¬-2}C£®{1£¬2}D£®{0£¬1£¬2}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸