精英家教网 > 高中数学 > 题目详情
1.在等差数列{an}中,已知a1+a6=12,a4=7
(1)求a9
(2)求{an}前n项和Sn

分析 (1)利用等差数列的通项公式即可得出.
(2)利用求和公式即可得出.

解答 解:(1)设等差数列{an}的公差为d,∵a1+a6=12,a4=7,
∴2a1+5d=12,a1+3d=7,
解得:a1=1,d=2,
∴a9=1+8×2=17.
(2)Sn=n+$\frac{n(n-1)}{2}×2$=n2
∴${S_n}={n^2}$.

点评 本题考查了等差数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.如图,已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1、F2,|F1F2|=4,P是双曲线右支上一点,直线PF2交y轴于点A,△APF1的内切圆切边PF1于点Q,若|PQ|=1,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若$cosα=-\frac{3}{5}$,且$α∈[{\frac{π}{2},π}]$,则$cos({α-\frac{π}{4}})$=(  )
A.$\frac{{\sqrt{2}}}{10}$B.$-\frac{{\sqrt{2}}}{10}$C.$\frac{{7\sqrt{2}}}{10}$D.$-\frac{{7\sqrt{2}}}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是(  )
A.72 cm3B.90 cm3C.108 cm3D.138 cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为162πml,设圆柱的高度为hcm,底面半径为rcm,且h≥6r.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为m元/cm2,易拉罐上下底面的制造费用均为n元/cm2(m,n为常数,且0<3m<n).
(1)写出易拉罐的制造费用y(元)关于r(cm)的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时r(cm)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是某几何体的三视图,图中小方格单位长度为1,则该几何体外接球的表面积为(  )
A.B.12πC.16πD.24π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在棱长为1的正方体ABCD-A'B'C'D'中,E是AA'的中点,P是三角形BDC'内的动点,EP⊥BC',则P的轨迹长为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{2}}{4}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角A,B,C所对的边分别为a,b,c,若三角形的面积$S=\frac{{\sqrt{3}}}{4}({a^2}+{b^2}-{c^2})$,则角C=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设各项均为正数的数列{an}的前n项和为Sn,满足4Sn=a${\;}_{n+1}^{2}$-4n-1,且a1=1,公比大于1的等比数列{bn}满足b2=3,b1+b3=10.
(1)求证数列{an}是等差数列,并求其通项公式;
(2)若cn=$\frac{a_n}{{3{b_n}}}$,求数列{cn}的前n项和Tn
(3)在(2)的条件下,若cn≤t2+$\frac{4}{3}$t-2对一切正整数n恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案