精英家教网 > 高中数学 > 题目详情
2.已知向量$\overrightarrow{a}$=(sin($\frac{π}{3}$-ωx),sinωx),$\overrightarrow{b}$=(sin($\frac{π}{3}$+ωx),$\sqrt{3}$cosωx),x∈R,函数f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$,若f(x)的最小正周期为π
(Ⅰ)求ω的值;
(Ⅱ)若f(α+$\frac{π}{6}$)=$\frac{21}{20}$,求sinα;
(Ⅲ)若对于任意x∈[0,$\frac{π}{2}$],m≤f(x)≤n恒成立,求n-m的取值范围.

分析 (Ⅰ)将函数利用,结合三角函数的图象和性质即可求ω的值.
(Ⅱ)根据f(α+$\frac{π}{6}$)=$\frac{21}{20}$的表达式,解方程求得sinα.
(Ⅲ)根据x∈[0,$\frac{π}{2}$],从而求出f(x)的最大最小值,恒成立问题转化成最值问题,分别求出m和n的范围,从而求n-m的取值范围.

解答 解:(Ⅰ)由题知f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$=sin($\frac{π}{3}$-ωx)sin($\frac{π}{3}$+ωx)+$\sqrt{3}$cosωxsinωx
=($\frac{\sqrt{3}}{2}$cosωx-$\frac{1}{2}$sinωx)($\frac{\sqrt{3}}{2}$cosωx+$\frac{1}{2}$sinωx  )+$\frac{\sqrt{3}}{2}$sin2ωx                              
=$\frac{3}{4}co{s}^{2}ωx-\frac{1}{4}si{n}^{2}ωx$)+$\frac{\sqrt{3}}{2}$sin2ωx
=$\frac{3}{4}\frac{1+cos2ωx}{2}-\frac{1}{4}\frac{1-cos2ωx}{2}$+$\frac{\sqrt{3}}{2}$sin2ωx
=$\frac{1}{2}cos2ωx+\frac{\sqrt{3}}{2}sin2ωx+\frac{1}{4}$
=sin(2ωx+$\frac{π}{6}$)$+\frac{1}{4}$
∵f(x)的最小正周期为π
∴T=$\frac{2π}{2ω}=π$,∴ω=1;
(Ⅱ)f(α+$\frac{π}{6}$)=sin[2($α+\frac{π}{6}$)$+\frac{π}{6}$]$+\frac{1}{4}$
=sin(2$α+\frac{π}{2}$)$+\frac{1}{4}$=cos2α$+\frac{1}{4}$=$\frac{21}{20}$
∴cos2α=$\frac{4}{5}$,∴1-2sin2α=$\frac{4}{5}$
∴sin2α=$\frac{1}{10}$∴$sinα=±\frac{\sqrt{10}}{10}$
 (Ⅲ)f(x)=$sin(2x+\frac{π}{6})+\frac{1}{4}$
∵0≤x≤$\frac{π}{2}$
∴0≤2x≤π
∴$\frac{π}{6}≤2x+\frac{π}{6}≤\frac{7π}{6}$∴$-\frac{1}{2}≤sin(2x+\frac{π}{6})≤1$
∴$-\frac{1}{4}≤sin(2x+\frac{π}{6})+\frac{1}{4}≤\frac{5}{4}$
∴$-\frac{1}{4}≤f(x)≤\frac{5}{4}$
故f(x)的最大值为$\frac{5}{4}$,最小值为$-\frac{1}{4}$
∵m≤f(x)≤n恒成立
∴n≥f(x)恒成立 即n≥f(x)max即n$≥\frac{5}{4}$
∴m≤f(x)恒成立  即m≤f(x)min即m≤$-\frac{1}{4}$
则$-m≥\frac{1}{4}$所以n-m≥1

点评 本题考查了点乘公式和二倍角以及化一公式对函数解析式的化简以及考查了函数恒成立问题转化成求最值问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=1+$\sqrt{2}sin(x-\frac{π}{4})$.
(1)求函数的最大值和单调递增区间;
(2)函数f(x)=1+$\sqrt{2}sin(x-\frac{π}{4})$的图象可以由函数y=sinx的图象经过怎样的变换得到?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ex|x2-a|(a≥0).
(1)当a=1时,求f(x)的单调减区间;
(2)若存在m>0,方程f(x)=m恰好有一个正根和一个负根,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知在($\sqrt{x}$-$\frac{2}{x}$)n的展开式中,前3项的系数之和为127.
(1)求n的值;
(2)求x-3项的系数;
(3)求展开式中的所有整式项.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}$x2-alnx+(a-1)x,其中a∈R.
(Ⅰ)当a≤0时,讨论函数f(x)的单调性;
(Ⅱ)若对任意x1,x2∈(1,∞),且x1≠x2,$\frac{f({x}_{2})-f({x}_{1})}{{x}_{2}-{x}_{1}}$>-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某公司的广告费支出x与销售额y(单位:万元)之间有下列对应数据
x24568
y3040605070
回归方程为$\hat y$=bx+a,其中b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,a=$\overline y$-b$\overline x$.
(1)画出散点图,并判断广告费与销售额是否具有相关关系;
(2)根据表中提供的数据,求出y与x的回归方程$\hat y$=bx+a;
(3)预测销售额为115万元时,大约需要多少万元广告费.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.直线l:kx-y+1=0被圆x2+y2-4y=0截得的最短弦长为(  )
A.$2\sqrt{3}$B.3C.$2\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a,b都是实数,那么“a3>b3”是“a2>b2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.等比数列{an}各项为正,a3,a5,-a4成等差数列,Sn为{an}的前n项和,则$\frac{{S}_{6}}{{S}_{3}}$=$\frac{9}{8}$.

查看答案和解析>>

同步练习册答案