精英家教网 > 高中数学 > 题目详情
18.数列{an}的前n项和为Sn,且满足a1=1,2Sn=(n+1)an
(1)求数列{an}的通项公式;
(2)求和Tn=$\frac{1}{{{a}_{2}}^{2}-1}$+$\frac{1}{{{a}_{3}}^{2}-1}$+$\frac{1}{{{a}_{4}}^{2}-1}$+…+$\frac{1}{{{a}_{n+1}}^{2}-1}$.

分析 (1)利用2an+1=2Sn+1-2Sn整理得$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,累乘即得结论;
(2)通过an=n、裂项可知$\frac{1}{{{a}_{n+1}}^{2}-1}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),并项相加即得结论.

解答 解:(1)∵2Sn=(n+1)an
∴2Sn+1=(n+2)an+1
两式相减得:2an+1=(n+2)an+1-(n+1)an
整理得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{n+1}{n}$,
∴$\frac{{a}_{2}}{{a}_{1}}$=$\frac{1+1}{1}$=2,
$\frac{{a}_{3}}{{a}_{2}}$=$\frac{1+2}{2}$=$\frac{3}{2}$,

$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{1+n-1}{n-1}$=$\frac{n}{n-1}$,
累乘得:$\frac{{a}_{n}}{{a}_{1}}$=n,
又∵a1=1,
∴an=n•a1=n;
(2)∵an=n,
∴$\frac{1}{{{a}_{n+1}}^{2}-1}$=$\frac{1}{(n+1)^{2}-1}$=$\frac{1}{2}$($\frac{1}{n}$-$\frac{1}{n+2}$),
∴Tn=$\frac{1}{{{a}_{2}}^{2}-1}$+$\frac{1}{{{a}_{3}}^{2}-1}$+$\frac{1}{{{a}_{4}}^{2}-1}$+…+$\frac{1}{{{a}_{n+1}}^{2}-1}$
=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+2}$)
=$\frac{1}{2}$(1-$\frac{1}{n+2}$)
=$\frac{n+1}{2n+4}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知△ABC中,a=$\sqrt{5}$,b=$\sqrt{15}$,∠A=30°,则c=(  )
A.$\sqrt{15}$B.$\sqrt{5}$C.2$\sqrt{5}$或$\sqrt{5}$D.$\sqrt{15}$或$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=(-16,-8),$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=(-8,-12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=2asinωxcosωx+2$\sqrt{3}{cos^2}ωx-\sqrt{3}({a>0,ω>0})$的最大值为2,且最小正周期为π.
(1)求函数f(x)的解析式及其对称轴方程;
(2)若$f({α-\frac{π}{6}})=\frac{4}{3}$,求cos4α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.校庆期间,某同学从2本相同的画册和3个相同的纪念章中,任取4件作为礼物赠送给4为校友,每人1件,则不同的赠送方法共有(  )
A.4种B.10种C.18种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.化简:sin3α±cos3α=(sinα+cosα)(1-$\frac{1}{2}$sin2α)和(sinα-cosα)(1+$\frac{1}{2}$sin2α).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知:a=$\root{3}{4}$+$\root{3}{2}$+$\root{3}{1}$,那么$\frac{3}{a}$+$\frac{3}{{a}^{2}}$+$\frac{1}{{a}^{3}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟).
组别
候车时间[0,5)[5,10)[10,15)[15,20)[20,25]
人数2642l
(I)估计这60名乘客中候车时间少于10分钟的人数;
(II)若从上表第三、四组的6人中任选2人作进一步的调查.
①列出所有可能的结果;
②求抽到的两人恰好来自不同组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,在以AE=2为直径的半圆周上,B,C,D分别为弧AE的四等分点.
(1)以O为起点,从A,B,C,D,E这5个点中任取一点为终点得到一个向量$\overrightarrow{a}$,求满足$\overrightarrow{a}$在$\overrightarrow{OA}$上的射影为正的概率;
(2)以O为起点,从A,B,C,D,E这5个点中任取两点分别为终点得到两个向量,求这两个向量垂直的概率.

查看答案和解析>>

同步练习册答案