精英家教网 > 高中数学 > 题目详情

【题目】在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动.

1)根据以上数据建立一个2×2的列联表;并估计,以运动为主的休闲方式的人的比例;

2)能否在犯错误的概率不超过0.025的前提下,认为性别与休闲方式有关系?

附表:

PK2k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

K2.

【答案】1)列联表见解析,1531;(2)能

【解析】

1)由题设所给的数据可得列联表,然后求出以运动为主的休闲方式的人的比例;

2)先假设休闲与性别无关,求K2,再结合题意即可得解.

解:(1)由所给的数据得到列联表:

休闲方式

性别

看电视

运动

合计

43

27

70

21

33

54

合计

64

60

124

∴以运动为主要的休闲方式的比例为,即1531

2)假设休闲与性别无关,

6.2015.024

所以在犯错误的概率不超过0.025的前提下认为休闲方式与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2002年8月在北京召开的国际数学家大会会标如图所示,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,设直角三角形中较小的锐角为,大正方形的面积是1,小正方形的面积是.若,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线(其中)的焦点的直线交抛物线于两点,且两点的纵坐标之积为

(1)求抛物线的方程;

(2)当时,求的值;

(3)对于轴上给定的点(其中),若过点两点的直线交抛物线的准线点,求证:直线轴交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论的单调性;

(2)当时,函数的图象恒在轴上方,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论的单调性;

(2)若,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCDPDDC,点EPC的中点,作EFPBPB于点F.

1)求证:PA∥平面BDE

2)求证:PB⊥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的营销部门对某件商品在网上销售情况进行调查,发现当这件商品每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过统计得到以下表:

1)经分析发现,可用线性回归模型拟合该商品销量(百件)与返还点数之间的相关关系.请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;

2)该公司为了在购物节期间对所有商品价格进行新一轮调整,随机抽查了上一年购物节期间60名网友的网购金额情况,得到如下数据统计表:

网购金额

(单位:千元)

合计

频数

3

9

9

15

18

6

60

若网购金额超过2千元的顾客定义为“网购达人”,网购金额不超过2千元的顾客定义为“非网购达人”.该营销部门为了进步了解这60名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定10人,若需从这10人中随机选取3人进行问卷调查.为选取的3人中“网购达人”的人数,求的分布列和数学期望.

参考公式及数据:①;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为是椭圆上位于第一象限内的任意一点,为坐标原点,关于的对称点为,圆.

1)求椭圆和圆的标准方程;

2)过点与圆相切于点,使得点,点的两侧.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,其中.

(1)当时,写出函数的单调区间(不要求证明);

(2)若对于任意的,均有成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案