精英家教网 > 高中数学 > 题目详情
1.已知集合A={x|x2-x≤0},B={x|-2≤x≤0},则A∩∁RB=(  )
A.B.{x∈R|x≠0}C.{x|0<x≤1}D.R

分析 分别求出关于集合A,集合B的补集,再取交集即可.

解答 解:∵集合A={x|x2-x≤0}={x|0≤x≤1},
B={x|-2≤x≤0},∁RB=(0,+∞)∪(-∞,-2),
则A∩∁RB={x|0<x≤1},
故选:C.

点评 本题考查了集合的交、补集的混合运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知sinθ=$\frac{3}{5}$,θ∈($\frac{π}{2}$,π).求值:①sin($\frac{π}{2}$+θ);②tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),短轴的一个端点与两个焦点的连线构成面积为2的等腰直角三角形.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)的直线l与椭圆C相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在区间(-1,1)内任取两个实数,则这两个实数的绝对值之和小于1的概率是(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C的圆心C在抛物线y2=8x的第一象限部分上,且经过该抛物线的顶点和焦点F
(1)求圆C的方程
(2)设圆C与抛物线的准线的公共点为A,M是圆C上一动点,求△MAF的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.现有5人坐成一排,任选其中3人相互调整位置(着3人中任何一人不能做回原来的位置),其余2人位置不变,则不同的调整的方案的种数有20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.复数z满足(z+2)(1-i)=2(i为虚数单位),则z=(  )
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.四边形OABC中,$\overrightarrow{CB}=\frac{1}{2}\overrightarrow{OA}$,若$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OC}=\overrightarrow b$,则$\overrightarrow{AB}$=(  )
A.$\overrightarrow a-\frac{1}{2}\overrightarrow b$B.$\frac{\overrightarrow a}{2}-\overrightarrow b$C.$\overrightarrow b+\frac{\overrightarrow a}{2}$D.$\overrightarrow b-\frac{1}{2}\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知cosx+siny=$\frac{1}{2}$,求z=asiny+cos2x,(a∈R)的最大值.

查看答案和解析>>

同步练习册答案