精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数若满足:①对任意,都有;②对任意,都有,则称函数为“中心捺函数”,其中点称为函数的中心.已知函数是以为中心的“中心捺函数”,若满足不等式,当时,的取值范围为( )

A. B. C. D.

【答案】C

【解析】

先结合题中条件得出函数为减函数且为奇函数,由,可得出,化简后得出,结合可求出,再由结合不等式的性质得出的取值范围.

知此函数为减函数.

由函数是关于的“中心捺函数”,知曲线关于点对称,故曲线关于原点对称,故函数为奇函数,且函数上递减,

于是得.

.

则当时,令m=x,y=n则:

问题等价于点(x,y)满足区域,如图阴影部分,

由线性规划知识可知为(x,y)与(0,0)连线的斜率,

由图可得

,故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列叙述正确的是(

A.命题pq为真,则恰有一个为真命题

B.命题已知,则的充分不必要条件

C.命题都有,则,使得

D.如果函数在区间上是连续不断的一条曲线,并且有,那么函数在区间内有零点

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦点在轴上的椭圆经过点,椭圆的离心率为是椭圆的左、右焦点,为椭圆上任意点.

1)若面积为,求的值;

2)若点的中点(为坐标原点),过且平行于的直线交椭圆两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年9月支付宝宣布在肯德基的KPRO餐厅上线刷脸支付,也即用户可以不用手机,单单通过刷脸就可以完成支付宝支付,这也是刷脸支付在全球范围内的首次商用试点.某市随机抽查了每月用支付宝消费金额不超过3000元的男女顾客各300人,调查了他们的支付宝使用情况,得到如下频率分布直方图:

若每月利用支付宝支付金额超过2千元的顾客被称为“支付宝达人”, 利用支付宝支付金额不超过2千元的顾客称为“非支付宝达人”.

(I)若抽取的“支付宝达人”中女性占120人,请根据条件完成上面的列联表,并判断能否在犯错误的概率不超过0.001的前提下认为“支付宝达人”与性别有关.

(II)支付宝公司为了进一步了解这600人的支付宝使用体验情况和建议,从“非支付宝达人” “支付宝达人”中用分层抽样的方法抽取8人.若需从这8人中随机选取2人进行问卷调查,求至少有1人是“支付宝达人”的概率.

附:参考公式与参考数据如下

,其中.

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次测验中,某班40名考生的成绩满分100分统计如图所示.

(Ⅰ)估计这40名学生的测验成绩的中位数精确到0.1;

(Ⅱ)记80分以上为优秀,80分及以下为合格,结合频率分布直方图完成下表,并判断是否有95%的把握认为数学测验成绩与性别有关?

合格

优秀

合计

男生

16

女生

4

合计

40

附:

0.050

0.010

0.001

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,椭圆经过点.

(1)求椭圆的标准方程;

(2)设点是椭圆上的任意一点,射线与椭圆交于点,过点的直线与椭圆有且只有一个公共点,直线与椭圆交于两个相异点,证明:面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且.

(1) 证明数列是等比数列,并求出数列的通项公式;

(2) ,求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数满足:对于任意正数,都有,且,则称函数速增函数”.

1)试判断函数是否是速增函数

2)若函数速增函数,求的取值范围;

3)若函数速增函数,且,求证:对任意,都有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)时,求函数上的最大值和最小值;

(2)若函数上的单调函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案