精英家教网 > 高中数学 > 题目详情
定义在R上的函数f(x),当x≠-2时,恒有(x+2)f′(x)<0(其中f′(x)是函数f(x)的导数),又a=f(log 
1
3
3),b=f[(
1
3
)0.1
],c=f(ln3),则(  )
A、a<b<c
B、b<c<a
C、c<a<b
D、c<b<a
考点:利用导数研究函数的单调性,对数值大小的比较
专题:函数的性质及应用,导数的综合应用
分析:先由条件(x+2)f′(x)<0得到函数的单调区间,再比较自变量log 
1
3
3与(
1
3
)0.1
与ln3的大小
解答: 解:(x+2)f′(x)<0?
x+2<0
f′(x)>0
x+2>0
f′(x)<0

∴f(x)在(-∞,-2)时递增,f(x)在(-2,+∞)时递减,
log
1
3
3
=-1,0<(
1
3
)
0.1
<1,1<ln3
∴log 
1
3
3<(
1
3
)0.1
<ln3,
又函数f(x)在(-2,+∞)时递减,
∴f(log 
1
3
3)>f[(
1
3
)0.1
]>f(ln3),
∴a>b>c
故选:D
点评:本题考查函数的单调性,比较函数值的大小转化为比较自变量的大小是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
2
2x+1

(Ⅰ)若函数f(x)为奇函数,求a的值;
(Ⅱ)若a=2,则是否存在实数m,n(m<n<0),使得函数f(x)的定义域和值域都为[m,n]?若存在,求出m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.
(Ⅰ)求M的轨迹方程;
(Ⅱ)当|OP|=|OM|时,求l的方程及△POM的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)是定义在R上的偶函数,且满足f(x+2)=f(x).当x∈[0,1]时,f(x)=2x,若方程ax+a-f(x)=0(a>0)恰有三个不相等的实数根,则实数a的取值范围是(  )
A、(
1
2
,1)
B、[0,2]
C、(1,2)
D、[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三边a>b>c,且a+c=2b,A-C=
π
2
,求a:b:c.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知a1=-1,且an+1=2an+3n-4(n∈N*).
(1)求证:数列{an+1-an+3}是等比数列;
(2)求数列{an}的通项公式;
(3)求和:Sn=|a1|+|a2|+|a3|+…+|an|(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

在斜三角形ABC中,角A、B、C所对的边分别是a、b,c,且
a2+c2-b2
ac
=-
cos(A+C)
sinAcosA

(Ⅰ)求角A的大小;
(Ⅱ)若
sinB
cosC
2
,求角C的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=cosβ,cosα=sin2β,则sin2β+cos2α=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法错误的是(  )
A、若命题p:对于任意的x∈(1,+∞),都有x2>1,则命题p的否定是:存在x∈(1,+∞),使x2≤1
B、“sinθ=
1
2
”是“θ=30°”的必要不充分条件
C、命题“若a=0,则ab=0”的否命题是:“若a≠0,则ab≠0”
D、已知p:存在x∈R,使cosx=1,q:任意x∈R,都有x2-x+1>0,则“p且q”为假命题

查看答案和解析>>

同步练习册答案