精英家教网 > 高中数学 > 题目详情

【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.
(1)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

【答案】
(1)解:根据频率分布直方图的性质可得:(0.01+0.02+0.04+x+0.07)×5=1,解得x=0.06.

估计这500名志愿者中年龄在[35,40)岁的人数=0.06×5×500=150人


(2)解:用分层抽样的方法,从100名志愿者中选取10名,

则其中年龄“低于35岁”的人有6名,

“年龄不低于35岁”的人有4名.

故X的可能取值为0,1,2,3,

P(X=0)= =

P(X=1)= =

P(X=2)= =

P(X=3)= =

故X的分布列为

X

0

1

2

3

P

EX=0× +1× +2× +3× =1.8


【解析】(1)根据小矩形的面积等于频率,而频率之和等于0.即可得出x,再用频率×总体容量即可.(2)分层抽样的方法,从100名志愿者中选取10名;则其中年龄“低于35岁”的人有10×(0.01+0.04+0.07)×5=6名,“年龄不低于35岁”的人有4名.X的可能取值为0,1,2,3,再利用超几何分布即可得出,再利用数学期望的计算公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某海警基地码头O的正东方向40海里处有海礁界碑M,过点M且与OM即北偏西)的直线l在在此处的一段为领海与公海的分界线(如图所示),在码头O北偏东方向领海海面上的A处发现有一艘疑似走私船(可疑船)停留. 基地指挥部决定在测定可疑船的行驶方向后,海警巡逻艇从O处即刻出发,按计算确定方向以可疑船速度的2倍航速前去拦截,假定巡逻艇和可疑船在拦截过程中均未改变航向航速,将在P处恰好截获可疑船.

(1)如果OA相距6海里,求可疑船被截获处的点P的轨迹;

(2)若要确保在领海内捕获可疑船(即P不能在公海上).则之间的最大距离是多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点的双曲线的右焦点为,右顶点为.

(1)求双曲线的方程;

(2)若直线与双曲线恒有两个不同的交点,且(其中为坐标原点),求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,沿对角线将折起,使点C移到 点,且C点在平面ABD的射影O恰在AB上.

(1)求证:平面ACD

求直线AB与平面D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司制定了一个激励销售人员的奖励方案:当销售利润不超过15万元时,按销售利润的进行奖励;当销售利润超过15万元时,若超过部分为A万元,则超出部分按进行奖励,没超出部分仍按销售利润的进行奖励记奖金总额为单位:万元,销售利润为单位:万元

1写出该公司激励销售人员的奖励方案的函数表达式;

2如果业务员老张获得万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,a,b,c分别为内角A,B,C的对边,且asin B=-bsin.

(1)求A;

(2)若△ABC的面积S=c2,求sin C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分13分)

已知圆满足:

y轴所得弦长为2

x轴分成两段圆弧,其弧长的比为31

圆心到直线lx-2y=0的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为直角梯形,平面 的中点,

1求证:平面

2,求点到平面 的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知O为坐标原点,抛物线C:y2=nx(n>0)在第一象限内的点P(2,t)到焦点的距离为 ,曲线C在点P处的切线交x轴于点Q,直线l1经过点Q且垂直于x轴.
(Ⅰ)求线段OQ的长;
(Ⅱ)设不经过点P和Q的动直线l2:x=my+b交曲线C于点A和B,交l1于点E,若直线PA,PE,PB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.

查看答案和解析>>

同步练习册答案