【题目】如图,在四棱锥中,四边形为直角梯形,平面 ,为的中点,.
(1)求证:平面 ;
(2)设,求点到平面 的距离.
【答案】(1)见解析,(2)
【解析】
试题分析:(1)证明线面平行常用方法:一是利用线面平行的判定定理,二是利用面面平行的性质定理,三是利用面面平行的性质;(2)利用棱锥的体积公式求体积.(3)证明线面垂直的方法:一是线面垂直的判定定理;二是利用面面垂直的性质定理;三是平行线法(若两条平行线中的一条垂直于这个平面,则另一条也垂直于这个平面.解题时,注意线线、线面与面面关系的相互转化.(4)在求三棱柱体积时,选择适当的底作为底面,这样体积容易计算.
试题解析:(1)证明:
(方法一)设线段的中点为,连接.
∵为的中点,∴
∵,且,∴四边形为平行四边形,∴.
又,∴平面 平面.
∵平面 ,∴平面 .
(方法二)设线段的中点为,连接.
∵为的中点,
∴,且.
又∵,且,∴,∴四边形为平行四边形,∴.
∵平面 平面 ,
∴平面
(2)解:(方法一)∵四边形为直角梯形,.
∴四边形为正方形,为等腰直角三角形.
∴,即.
又∵平面 ,∴.
又,∴平面 ,面平面 ,
∴平面 平面
过作于点,则平面 ,即为点到平面的距离.
∵,∴,∴,点到平面 的距离为
(方法二)设点到平面的距离为.
∵,∴,∴.
由方法一得,平面 ,∴,
∴.
科目:高中数学 来源: 题型:
【题目】已知函数的定义域,部分对应值如表, 的导函数的图象如图所示,下列关于函数的命题;
①函数的值域为;
②函数在上是减函数;
③如果当时, 最大值是,那么的最大值为;
④当时,函数最多有4个零点.
其中正确命题的序号是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设,.
(Ⅰ)当时,求曲线在处的切线的方程;
(Ⅱ)如果存在,使得成立,求满足上述条件的最大整数;
(Ⅲ)如果对任意的,都有成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.
(1)求频率分布直方图中的值;
(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;
(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2016年6月英国“脱欧”公投前夕,为了统计该国公民是否有“留欧”意愿,该国某中学数学兴趣小组随机抽查了50名不同年龄层次的公民,调查统计他们是赞成“留欧”还是反对“留欧”.现已得知50人中赞成“留欧”的占60%,统计情况如下表:
年龄层次 | 赞成“留欧” | 反对“留欧” | 合计 |
18岁—19岁 | 6 | ||
50岁及50岁以上 | 10 | ||
合计 | 50 |
(1)请补充完整上述列联表;
(2)请问是否有97.5%的把握认为赞成“留欧”与年龄层次有关?请说明理由.
参考公式与数据:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为、,椭圆上的点满足,且的面积为.
(1)求椭圆的方程;
(2)设椭圆的左、右顶点分别为、,过点的动直线与椭圆相交于、两点,直线与直线的交点为,证明:点总在直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{bn}中的b3、b4、b5.
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)数列{bn}的前n项和为Sn,求证:数列{Sn+}是等比数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com