精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的左、右焦点分别为,椭圆上的点满足,且的面积为

1求椭圆的方程;

2设椭圆的左、右顶点分别为,过点的动直线与椭圆相交于两点,直线与直线的交点为,证明:点总在直线

【答案】12证明见解析

【解析】

试题分析:1由已知,可求,故方程为2当直线不与轴垂直时,设直线的方程为,由,由共线,得,又,则,代入可得结论

试题解析:1由题意知:

椭圆上的点满足,且

椭圆的方程为

2由题意知

当直线轴垂直时,,则的方程是:

的方程是:,直线与直线的交点为

在直线

2当直线不与轴垂直时,设直线的方程为

共线,

,需证明共线,

需证明,只需证明

,显然成立,若,即证明

成立

共线,即点总在直线

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,若时,恒有 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,四边形为直角梯形,平面 的中点,

1求证:平面

2,求点到平面 的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,边所在直线的方程分别为,已知边上一点.

(1)若边上的高,求直线的方程;

(2)若边的中线,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三年级在高校自主招生期间,把学生的平时成绩按百分制折算并排序,选出前300名学生,并对这300名学生按成绩分组,第一组,第二组,第三组,第四组,第五组,如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列

I请在图中补全频率直方图;

II大学决定在成绩高的第4,5组中用分层抽样的方法抽取6名学生,并且分成2组,每组3人进行面试,求95分包括95分以上的同学被分在同一个小组的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学高三数学奥林匹克竞赛集训队的一次数学测试成绩的茎叶图(图1)和频率分布直方图(图2)都受到不同程度的破坏,可见部分如图所示,据此解答如下问题.

(1)求该集训队总人数及分数在[80,90)之间的频数;

(2)计算频率分布直方图中[80,90)的矩形的高;

(3)若要从分数在[80,100]之间的试卷中任取两份分析学生的答题情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校从高年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.

(1)若该校高年级共有学生1000人,试估计成绩不低于60分的人数;

(2)该校高二年级全体学生期中考试成绩的众数、中位数和平均数的估计值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面、边长为的菱形,又,且,点分别是棱的中点.

(1证明:平面

(2)证明:平面平面

(3)求点到平面的距离.[

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx(a0)的导函数f(x)=-2x+7,数列{an}的前n项和为Sn,点Pn(n,Sn)(nN*)均在函数y=f(x)的图象上,求数列{an}的通项公式及Sn的最大值.

查看答案和解析>>

同步练习册答案