【题目】设
,
.
(Ⅰ)当
时,求曲线
在
处的切线的方程;
(Ⅱ)如果存在
,使得
成立,求满足上述条件的最大整数
;
(Ⅲ)如果对任意的
,都有
成立,求实数
的取值范围.
【答案】(1)
;(2)
;(3)
.
【解析】
试题分析:本题考查导数的运算,利用导数研究函数的单调性、最值等基础知识,考查函数思想和转化思想,考查综合分析和解决问题的能力.第一问,将
代入得到
解析式,求
将
代入得到切线的斜率,再将
代入到
中得到切点的纵坐标,利用点斜式求出切线方程;第二问,先将问题转化为
,进一步转化为求函数
的最大值和最小值问题,对
求导,通过画表判断函数的单调性和极值,求出最值代入即可;第三问,结合第二问的结论,将问题转化为
恒成立,进一步转化为
恒成立,设出新函数
,求
的最大值,所以
即可.
试题解析:(1)当
时,
,
,
,
,
所以曲线
在
处的切线方程为
; 2分
(2)存在
,使得
成立等价于:
,
考察
,
,
|
|
|
|
|
|
|
|
|
|
| |
|
| 递减 | 极小值 | 递增 |
|
由上表可知:
,
,
所以满足条件的最大整数
; 7分
(3)当
时,
恒成立等价于
恒成立,
记
,
,
,
记
,
,由于
,
,所以
在
上递减,
当
时,
,
时,
,
即函数
在区间
上递增,在区间
上递减,
所以
,所以
.
科目:高中数学 来源: 题型:
【题目】为了解某地参加2015 年夏令营的
名学生的身体健康情况,将学生编号为
,采用系统抽样的方法抽取一个容量为
的样本,且抽到的最小号码为
,已知这
名学生分住在三个营区,从
到
在第一营区,从
到
在第二营区,从
到
在第三营区,则第一、第二、第三营区被抽中的人数分别为( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
与椭圆
相交于
两点.
(1)若椭圆的离心率为
,焦距为
,求线段
的长;
(2)若向量
与向量
互相垂直(其中
为坐标原点),当椭圆的离心率
时,求椭圆长轴长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,椭圆上任意一点到右焦点
的距离的最大值为
.
(1)求椭圆的方程;
(2)已知点
是线段
上异于
的一个定点(
为坐标原点),是否存在过点
且与
轴不垂直的直线
与椭圆交于
两点,使得
,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
的左、右焦点分别为
,过点
作垂直于
轴的直线
,直线
垂直
于点
,线段
的垂直平分线交
于点
.
(1)求点
的轨迹
的方程;
(2)过点
作两条互相垂直的直线
,且分别交椭圆于
,求四边形
面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知动直线
过点
,且与圆
交于
、
两点.
(1)若直线
的斜率为
,求
的面积;
(2)若直线
的斜率为
,点
是圆
上任意一点,求
的取值范围;
(3)是否存在一个定点
(不同于点
),对于任意不与
轴重合的直线
,都有
平分
,若存在,求出定点
的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从高二年级学生中随机抽取50名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100],得到如图所示的频率分布直方图.
![]()
(1)若该校高二年级共有学生1000人,试估计成绩不低于60分的人数;
(2)求该校高二年级全体学生期中考试成绩的众数、中位数和平均数的估计值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com