【题目】设椭圆 的左、右焦点分别为F1 , F2 , 离心率为e,过F2的直线与椭圆的交于A,B两点,若△F1AB是以A为顶点的等腰直角三角形,则e2=( )
A.3﹣2
B.5﹣3
C.9﹣6
D.6﹣4
科目:高中数学 来源: 题型:
【题目】已知点A(﹣2,0),B(2,0),P(x0 , y0)是直线y=x+3上任意一点,以A,B为焦点的椭圆过P,记椭圆离心率e关于x0的函数为e(x0),那么下列结论正确的是( )
A.e与x0一一对应
B.函数e(x0)无最小值,有最大值
C.函数e(x0)是增函数
D.函数e(x0)有最小值,无最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在矩形ABCD中,AD=2,AB=1,点E是AD的中点,将△DEC沿CE折起到△D′EC的位置,使二面角D′﹣EC﹣B是直二面角.
(1)证明:BE⊥CD′;
(2)求二面角D′﹣BC﹣E的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知F为抛物线y2=4x的焦点,点A,B,C在该抛物线上,其中A,C关于x轴对称(A在第一象限),且直线BC经过点F.
(1)若△ABC的重心为G( ),求直线AB的方程;
(2)设S△ABO=S1 , S△CFO=S2 , 其中O为坐标原点,求S12+S22的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)= ax2﹣(2a+1)x+2lnx(a∈R). (Ⅰ)若曲线y=f(x)在x=1和x=3处的切线互相平行,求a的值;
(Ⅱ)求f(x)的单调区间;
(Ⅲ)设g(x)=x2﹣2x,若对任意x1∈(0,2],均存在x2∈(0,2],使得f(x1)<g(x2),求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com