精英家教网 > 高中数学 > 题目详情
1.因为对数函数y=logax(a>0,且a≠1)是增函数,而y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x是增函数,上面的推理错误的是(  )
A.大前提B.小前提C.推理形式D.以上都是

分析 对于对数函数来说,底数的范围不同,则函数的增减性不同,当a>1时,函数是一个增函数,当0<a<1时,对数函数是一个减函数,对数函数y=logax(a>0且a≠1)是增函数这个大前提是错误的

解答 解:∵当a>1时,函数y=logax(a>0且a≠1)是一个增函数,
当0<a<1时,此函数是一个减函数
∴y=logax(a>0且a≠1)是增函数这个大前提是错误的,
从而导致结论错.
故选:A

点评 本题考查演绎推理的基本方法,考查对数函数的单调性,是一个基础题,解题的关键是理解函数的单调性,分析出大前提是错误的

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知数列{an}是首项为2,公比为2的等比数列,又数列{bn}满足bn=2log2an,Sn是数列{bn}的前n项和.
(Ⅰ)求Sn
(Ⅱ)若对任意的n∈N*,都有$\frac{S_n}{a_n}≤\frac{S_k}{a_k}$成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设z1=-2i,z2=i-2,复数Z1和Z2在复平面内对应点分别为A、B,点O为原点,则△AOB的面积为(  )
A.1B.2C.$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a=({1,n}),\overrightarrow b=({-1,n})$,若$2\overrightarrow a-\overrightarrow b$与$\overrightarrow b$垂直,则$|{\overrightarrow a}|$=(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,某城市的电视发射塔CD建在市郊的小山上,小山的高BC为30米,在地面上
有一点A,测得A,C间的距离为78米,从A观测电视发射塔CD的视角(∠CAD)为
45°,则这座电视发射塔的高度CD约为145.米(结果保留到整数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有如图两个程序(  )
A.两个程序输出结果相同
B.程序(1)输出的结果比程序(2)输出的结果大
C.程序(2)输出的结果比程序(1)输出的结果大
D.两个程序输出结果的大小不能确定,谁大谁小都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.f(x)=$\frac{{a•{4^x}-{a^{-2}}}}{{{4^x}+1}}$为定义在R上的奇函数
(1)求a;
(2)设$h(x)={log_2}^{\frac{a+x}{a-x}},g(x)={log_{\sqrt{2}}}^{\frac{1+x}{k}}$,当$x∈[{\frac{1}{3}\;,\;\frac{2}{3}}]$时h(x)≤g(x)恒成立,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC中,角A、B、C的对边a、b、c,且3acosA=$\sqrt{6}$(bcosC+ccosB).
(1)求cosA的值;
(2)若$sin(\frac{π}{2}+B)=\frac{1}{3}$,c=2$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的可导函数f(x),已知y=f′(x)的图象如图所示,则y=f(x)的增区间是R

查看答案和解析>>

同步练习册答案