精英家教网 > 高中数学 > 题目详情
11.定义在R上的可导函数f(x),已知y=f′(x)的图象如图所示,则y=f(x)的增区间是R

分析 通过图象得到f′(x)>0在R上恒成立,从而求出函数f(x)的单调区间.

解答 解:由图象得:f′(x)>0在R上恒成立,
∴函数y=f(x)在R上递增,
故答案为:R.

点评 本题考查了函数的单调性,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.因为对数函数y=logax(a>0,且a≠1)是增函数,而y=log${\;}_{\frac{1}{2}}$x是对数函数,所以y=log${\;}_{\frac{1}{2}}$x是增函数,上面的推理错误的是(  )
A.大前提B.小前提C.推理形式D.以上都是

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=m-ncos3x(n>0)的最大值为$\frac{3}{2}$,最小值为$-\frac{1}{2}$.
(1)求函数g(x)=-4msin(3nx)的周期、最值,并求取得最值时的x值;
(2)求函数g(x)=-4msin(3nx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知:$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$都为单位向量,其中$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则$\sqrt{1-\overrightarrow{a}•\overrightarrow{c}}$+$\sqrt{1-\overrightarrow{b}•\overrightarrow{c}}$的范围是[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{3|lo{g}_{3}x|,0<x≤3}\\{(x-4)(x-6),x>3}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d),且a<b<c<d,则abcd的取值范围是(  )
A.(23,24)B.(24,27)C.(21,24)D.(24,25)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ln(1+x)-x+$\frac{k}{2}$x2(k≥0).当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若变量x,y满足约束条件:$\left\{{\begin{array}{l}{0≤x≤7}\\{2≤y≤8}\\{3x-y≥1}\end{array}}\right.$,则变量z=x-y的取值情况是(  )
A.既没有最大值也没有最小值B.有最大值5,没有最小值
C.有最小值-1,没有最大值D.有最小值-5,也有最大值5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知x1,x2分别是函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+2bx+c的两个极值点,且x1∈(0,1)x2∈(1,2),则$\frac{b-2}{a-1}$的取值范围为(  )
A.(1,4)B.($\frac{1}{2}$,1)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x+$\frac{a}{x}$ (x>0)的最小最小值为$2•\root{4}{2}$,设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值;
(2)问:PM•PN是否为定值?若是,则求出该定值,若不是,请说明理由;
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

同步练习册答案