分析 (1)根据正弦定理进行求解即可求cosA的值;
(2)根据两角和差的正弦公式以及正弦定理,三角形的面积公式进行求解即可.
解答 解:(1)由正弦定理得$3sinAcosA=\sqrt{6}sin(B+C)$,
得$cosA=\frac{{\sqrt{6}}}{3}$.
(2)若$sin(\frac{π}{2}+B)=\frac{1}{3}$,
则$cosB=\frac{1}{3},sinB=\frac{{2\sqrt{2}}}{3}$,
${sinC}=sin(A+B)=sinAcosB+cosAsinB=\frac{{5\sqrt{3}}}{9}$
又$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}$得$a=\frac{{6\sqrt{2}}}{5},b=\frac{{8\sqrt{3}}}{5}$,
${S_△}=\frac{1}{2}absinC=\frac{8}{5}\sqrt{2}$.
点评 本题主要考查解三角形的应用,根据正弦定理以及三角形的面积公式是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 大前提 | B. | 小前提 | C. | 推理形式 | D. | 以上都是 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | i≤11 | B. | i≤10 | C. | i≥10 | D. | i≥11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.64×0.4 | B. | C${\;}_{5}^{4}$•0.64•(1-0.6)+C${\;}_{5}^{5}$•0.65 | ||
| C. | 0.64 | D. | C${\;}_{4}^{3}$×0.64×0.4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,4) | B. | ($\frac{1}{2}$,1) | C. | ($\frac{1}{4}$,$\frac{1}{2}$) | D. | ($\frac{1}{4}$,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com