精英家教网 > 高中数学 > 题目详情
18.如图所示,为测一树的高度,在地面上选取A、B两点,从A、B两点分别测得树尖的仰角为30°,45°,且A、B两点之间的距离为60m,求树的高度.

分析 要求树的高度,需求PB长度,要求PB的长度,在△PAB由正弦定理可得.

解答 解:在△PAB,∠PAB=30°,∠APB=15°,AB=60,
sin15°=sin(45°-30°)=sin45°cos30°-cos45°sin30°=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
由正弦定理得:PB=$\frac{ABsin30°}{sin15°}$=30($\sqrt{6}$+$\sqrt{2}$),
∴树的高度为PBsin45°=30×($\sqrt{6}$+$\sqrt{2}$)×$\frac{\sqrt{2}}{2}$=(30+30$\sqrt{3}$)m,
答:树的高度为(30+30$\sqrt{3}$)m.

点评 此题是实际应用题用到正弦定理和特殊角的三角函数值,正弦定理在解三角形时,用于下面两种情况:一是知两边一对角,二是知两角和一边,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax2+bx-2b
(1)a=b>0时,解关于x的不等式f(x)<0;
(2)当a=1时,若对任意的x∈(-∞,2),不等式f(x)≥1恒成立,求实数b的取值范围;
(3)若|f(-1)|≤1,|f(1)|≤3,求|a|+|b+2|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow a=({1,n}),\overrightarrow b=({-1,n})$,若$2\overrightarrow a-\overrightarrow b$与$\overrightarrow b$垂直,则$|{\overrightarrow a}|$=(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.有如图两个程序(  )
A.两个程序输出结果相同
B.程序(1)输出的结果比程序(2)输出的结果大
C.程序(2)输出的结果比程序(1)输出的结果大
D.两个程序输出结果的大小不能确定,谁大谁小都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.f(x)=$\frac{{a•{4^x}-{a^{-2}}}}{{{4^x}+1}}$为定义在R上的奇函数
(1)求a;
(2)设$h(x)={log_2}^{\frac{a+x}{a-x}},g(x)={log_{\sqrt{2}}}^{\frac{1+x}{k}}$,当$x∈[{\frac{1}{3}\;,\;\frac{2}{3}}]$时h(x)≤g(x)恒成立,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在研究色盲与性别的关系调查中,调查了男性400人,其中有30人患色盲,调查的600名女性中有20人患色盲.
(1)根据以上数据建立一个2×2列联表;
(2)有多大把握认为“性别与患色盲有关系”?
参考公式及数据:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
附临界值参考表:
P(K2≥x00.100.050.0250.100.0050.001
x02.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.△ABC中,角A、B、C的对边a、b、c,且3acosA=$\sqrt{6}$(bcosC+ccosB).
(1)求cosA的值;
(2)若$sin(\frac{π}{2}+B)=\frac{1}{3}$,c=2$\sqrt{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如果${A}_{n}^{5}$=a${C}_{n}^{n-5}$,则a的值是120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.分别求适合下列条件的直线方程:
(1)经过点P(3,2),且在两坐标轴上的截距相等;
(2)过点A(1,-1)与已知直线l:2x+y-6=0相交于B点,且|AB|=5.

查看答案和解析>>

同步练习册答案