精英家教网 > 高中数学 > 题目详情
若正数x,y满足x+3y=5xy,则x+y的最小值为
 
考点:基本不等式,基本不等式在最值问题中的应用
专题:常规题型,函数的性质及应用
分析:将x+3y=5xy转化为
1
5y
+
3
5x
=1,再由x+y=(
1
5y
+
3
5x
)•
(x+y),展开后利用基本不等式可求出x+y的最小值.
解答: 解:∵正数x,y满足x+3y=5xy,∴
1
5y
+
3
5x
=1

∴x+y=(x+y)•(
1
5y
+
3
5x
)=(
x
5y
+
3y
5x
)+(
3
5
+
1
5
)
2
x
5y
3y
5x
+
4
5
=
4+2
3
5

当且仅当
x
5y
=
3y
5x
,即x=
3
y
时取等号,此时结合x+3y=5xy,
x=
3+
3
5
y=
1+
3
5

∴x+y≥
4+2
3
5
,可知x+y的最小值为
4+2
3
5

故答案为
4+2
3
5
点评:本题为2012年浙江文科试题第(9)题的一个变式.容易做错,应注意等号成立的条件;“1”的替换是一个常用的技巧,应学会灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设F1,F2分别为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点,双曲线上存在一点P使得|PF1|+|PF2|=3b,|PF1|•|PF2|=
9
4
ab,则该双曲线的离心率为(  )
A、
4
3
B、
5
3
C、
9
4
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(3x+
π
4
).
(1)求f(x)的单调递增区间;
(2)若α是第二象限角,f(
α
3
)=
4
5
cos(α+
π
4
)cos2α,求cosα-sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知AB是⊙O的直径,C为⊙O上一点,以C为切点的切线交AB的延长线于点P,AM⊥CP,垂足为M,CD⊥AB,垂足为D.
(1)求证:AD=AM;
(2)若⊙O的直径为2,∠PCB=30°,求PC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知首项是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+2bn+1bn=0.
(1)令cn=
an
bn
,求数列{cn}的通项公式;
(2)若bn=3n-1,求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(5+2i)2(i为虚数单位),则z的实部为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈R),对函数y=g(x)(x∈I),定义g(x)关于f(x)的“对称函数”为函数y=h(x)(x∈I),y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x))关于点(x,f(x))对称.若h(x)是g(x)=
4-x2
关于f(x)=3x+b的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若变量x,y满足约束条件
y≤x
x+y≤4
y≥k
,且z=2x+y的最小值为-6,则k=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则(  )
A、P1=P2<P3
B、P2=P3<P1
C、P1=P3<P2
D、P1=P2=P3

查看答案和解析>>

同步练习册答案