精英家教网 > 高中数学 > 题目详情
1.袋中有4个红球,3个黑球,从袋中随机取球,设取到一个红球得2分,取到一个黑球的1分,现在从袋中随机摸出4个球,求:
(1)列出所得分数X的分布列;
(2)得分大于6分的概率.

分析 (1)由题意知X的可能取值为5,6,7,8,分别求出相应的概率,由此能求出X的分布列.
(2)得分大于6分的概率P=P(X=7)+P(X=8),由此能求出结果.

解答 解:(1)由题意知X的可能取值为5,6,7,8,
P(X=5)=$\frac{{C}_{4}^{1}{C}_{3}^{3}}{{C}_{7}^{4}}$=$\frac{4}{35}$,
P(X=6)=$\frac{{C}_{4}^{2}{C}_{3}^{2}}{{C}_{7}^{4}}$=$\frac{18}{35}$,
P(X=7)=$\frac{{C}_{4}^{3}{C}_{3}^{1}}{{C}_{7}^{4}}$=$\frac{12}{35}$,
P(X=8)=$\frac{{C}_{4}^{4}}{{C}_{7}^{4}}$=$\frac{1}{35}$,
∴X的分布列为:

 X 5 7 8
 P $\frac{4}{35}$ $\frac{18}{35}$ $\frac{12}{35}$ $\frac{1}{35}$
(2)得分大于6分的概率:
P=P(X=7)+P(X=8)=$\frac{12}{35}+\frac{1}{35}$=$\frac{13}{35}$.

点评 本题考查离散型随机变量的分布列、概率、排列组合等基础知识,考查推理论证能力、运算求解能力,考查函数与方程思想、化归与转化思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数f(x)=cos(ωx+$\frac{π}{6}$)(ω>0)在[0,π]内的值域为[-1,$\frac{\sqrt{3}}{2}$],则ω的取值范围是(  )
A.[$\frac{3}{2}$,$\frac{5}{3}$]B.[$\frac{5}{6}$,$\frac{3}{2}$]C.[$\frac{5}{6}$,+∞)D.[$\frac{5}{6}$,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,且$\overrightarrow a,\overrightarrow b$的夹角为60°,则$|{\overrightarrow a+\overrightarrow b}|$的值$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.实系数一元二次方程x2+ax+b=0的一个根在(0,1)上,另一个根在(1,2)上,则$\frac{2-b}{2-a}$的取值范围是(  )
A.(0,$\frac{2}{3}$)B.(-∞,$\frac{2}{3}$)C.($\frac{2}{3}$,2)D.$(\frac{2}{3},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列四个命题:
(1)p∧q(2)?p(3)p∨q(4)(?p)∨q
若这四个命题中只有一个是真命题,则这个真命题的序号是(  )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆的参数方程为:$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数).则圆的圆心坐标为(  )
A.(0,2)B.(0,-2)C.(-2,0)D.(2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在平面直角坐标系中,横、纵坐标均为整数的点叫做格点.若函数图象恰好经过k个格点,则称函数为k阶格点函数.已知函数:
①y=sinx;  ②y=cos(x+$\frac{π}{6}$); ③y=ex-1;  ④y=x2
其中为一阶格点函数的序号为(  )
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若$sinα=\frac{1}{3}$,则cos2α的值等于(  )
A.$\frac{7}{9}$B.$\frac{8}{9}$C.$\frac{{4\sqrt{2}}}{9}$D.$\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年河北省高二理上第一次月考数学试卷(解析版) 题型:解答题

已知的角平分线,且的面积之比为1:2.

(1)求的值;

(2)求的值.

查看答案和解析>>

同步练习册答案