精英家教网 > 高中数学 > 题目详情
19.已知数列{an}满足${a_0}=\frac{1}{3}$,${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$(n=1,2,3…),${b_n}=2{a_n}^2-{a_n}$,Sn=b1+b2+…+bn
证明:(Ⅰ)an-1<an<1(n≥1);
(Ⅱ)$0<{S_n}<n-\frac{1}{2}$(n≥2).

分析 (Ⅰ)由${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$得:${a_{n-1}}=2{a_n}^2-1$.可得显然an>0,$1-{a_{n-1}}=2-2{a_n}^2=2(1-{a_n}^2)=2(1+{a_n})(1-{a_n})$,故1-an与1-an-1同号,又$1-{a_0}=1-\frac{1}{3}=\frac{2}{3}>0$,可得an<1.可得  an-1-an=(2an+1)(an-1)<0,即an-1<an
(Ⅱ)由已知可得:${b_n}=2{a_n}^2-{a_n}={a_{n-1}}-{a_n}+1$,由0<an-1<an<1⇒an-1-an+1>0,
从而bn=an-1-an+1>0,于是,Sn=b1+b2+…+bn>0.由(Ⅰ)有1-an-1=2(1+an)(1-an),可得$\frac{{1-{a_n}}}{{1-{a_{n-1}}}}=\frac{1}{{2(1+{a_n})}}$$<\frac{1}{2}$,可得$1-{a_n}<\frac{1}{2}(1-{a_{n-1}})<{({\frac{1}{2}})^2}(1-{a_{n-2}})<…<{({\frac{1}{2}})^n}(1-{a_0})=\frac{2}{3}•\frac{1}{2^n}$,求和即可证明.

解答 证明:(Ⅰ)由${a_n}=\sqrt{\frac{1}{2}({1+{a_{n-1}}})}$得:${a_{n-1}}=2{a_n}^2-1$(*)
显然an>0,(*)式⇒$1-{a_{n-1}}=2-2{a_n}^2=2(1-{a_n}^2)=2(1+{a_n})(1-{a_n})$
故1-an与1-an-1同号,又$1-{a_0}=1-\frac{1}{3}=\frac{2}{3}>0$,
所以1-an>0,即an<1…(3分)
(注意:也可以用数学归纳法证明)
所以  an-1-an=(2an+1)(an-1)<0,即an-1<an
所以   an-1<an<1(n≥1)…(6分)
(Ⅱ)(*)式⇒${b_n}=2{a_n}^2-{a_n}={a_{n-1}}-{a_n}+1$,
由0<an-1<an<1⇒an-1-an+1>0,
从而bn=an-1-an+1>0,于是,Sn=b1+b2+…+bn>0,…(9分)
由(Ⅰ)有1-an-1=2(1+an)(1-an)⇒$\frac{{1-{a_n}}}{{1-{a_{n-1}}}}=\frac{1}{{2(1+{a_n})}}$$<\frac{1}{2}$,
所以$1-{a_n}<\frac{1}{2}(1-{a_{n-1}})<{({\frac{1}{2}})^2}(1-{a_{n-2}})<…<{({\frac{1}{2}})^n}(1-{a_0})=\frac{2}{3}•\frac{1}{2^n}$(**)…(11分)
所以Sn=b1+b2+…+bn=(a0-a1+1)+(a1-a2+1)+…(an-1-an+1)=${a_0}-{a_n}+n=\frac{1}{3}+n-{a_n}$…(12分)
=$-\frac{2}{3}+n+(1-{a_n})<-\frac{2}{3}+n+\frac{2}{3}•\frac{1}{2^n}$$≤-\frac{2}{3}+n+\frac{2}{3}•\frac{1}{2^2}=n-\frac{1}{2}$…(14分)
∴$0<{S_n}<n-\frac{1}{2}$(n≥2)成立…(15分)

点评 本题考查了数列递推关系、等比数列的定义通项公式与求和公式、数列递推关系、放缩法、不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知数列{an}为等比数列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an
(Ⅱ)若数列{bn}满足,bn+1=bn+an,b1=a2,求b5=?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x+1}{{x}^{2}+a}$(a>0).
(1)若f(x)在(1,f(1))处的切线方程为x+2y+b=0,求a+b的值;
(2)若f(x)在区间[1,+∞)上的最大值为$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的圆心为原点,且与截直线$x+y+2\sqrt{6}=0$所得弦长等于圆的半径.
(1)求圆C的半径;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,是否存在定点M使得直线AB恒过定点?若存在,求出定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a}$,$\overrightarrow{b}$是两个非零向量.向量$\overrightarrow{a}$=(1,x),向量$\overrightarrow{b}$=(3,1).向量$\overrightarrow{a}⊥\overrightarrow{b}$,则x的值为(  )
A.$\frac{1}{3}$B.3C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a$=(2,1),
(1)如果|$\overrightarrow b$|=$2\sqrt{5}$,且向量$\overrightarrow a$与$\overrightarrow b$共线,求$\overrightarrow b$的坐标表示;
(2)如果|$\overrightarrow b$|=$2\sqrt{10}$,且向量$\overrightarrow a$与$\overrightarrow b$夹角为$\frac{3π}{4}$,求$\overrightarrow b$的坐标表示.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知曲线${C_1}:{y^2}=tx(y>0,t>0)$在点$M(\frac{4}{t},2)$处的切线${C_2}:y={e^{x+1}}+1$与曲线也相切,则t的值为(  )
A.4eB.4e2C.$\frac{e^2}{4}$D.$\frac{e}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.从1到9的九个数字中取三个偶数四个奇数组成没有重复数字的七位数,试问:
(1)三个偶数排在一起的有几个?
(2)偶数排在一起、奇数也排在一起的有几个?
(3)任意两偶然都不相邻的七位数有几个?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知0<x≤3,则$y=x+\frac{16}{x}$的最小值为(  )
A.$\frac{25}{3}$B.16C.20D.10

查看答案和解析>>

同步练习册答案