精英家教网 > 高中数学 > 题目详情

已知函数f(x)=1-2ax-a2x(0<a<1)
(1)求函数f(x)的值域;
(2)若x∈[-2,1]时,函数f(x)的最小值为-7,求a的值和函数f(x) 的最大值.

解:(1)令t=ax,则t>0,∴g(t)=1-2t-t2=-(t+1)2+2
∵t>0,∴g(t)<1,即函数f(x)的值域为(-∞,1);
(2)∵x∈[-2,1],0<a<1,∴t∈[a,]
∴g(t)=1-2t-t2在[a,]上是减函数
∴t=时,g(t)min=--+1=-7
(舍去)
∴t=时,g(t)有最大值,即g(t)max=-
分析:(1)利用换元法,再进行配方,即可求得函数f(x)的值域;
(2)原因,求得函数的单调性,利用函数f(x)的最小值为-7,可求a的值,从而可得函数f(x) 的最大值.
点评:本题考查函数的最值与值域,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案