精英家教网 > 高中数学 > 题目详情
如图,AB为⊙O的直径,过点B作⊙O的切线BCOC交⊙O于点EAE的延长线交BC于点D

(1)求证:CE2 = CD · CB
(2)若AB = BC = 2,求CECD的长。
(1)利用相似三角形来证明线段的对应长度的比值,得到结论。
(2)3- 

试题分析:(Ⅰ)证明:连接BE.

∵BC为⊙O的切线  ∴∠ABC=90°,……2分

∵∠AEO=∠CED    ∴∠CED=∠CBE, ……4分
∵∠C=∠C∴△CED∽△CBE         
 ∴CE=CD•CB……6分
(Ⅱ)∵OB=1,BC=2   ∴OC=
∴CE=OC-OE=-1                                           8分
由(Ⅰ)CE =CD•CB   得(-1)=2CD
∴CD=3-                                                   10分
点评:解决的关键是能充分的利用三角形的相似以及切割线定理来得到线段的长度比值和求解,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形的外接圆为⊙是⊙的切线,的延长线与相交于点
求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

中,,过点的直线与其外接圆交于点,交延长线于点.
(1)求证:; (2)若,求 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点M在菱形ABCDBC边上,连结AMBD于点E,过菱形ABCD的顶点CCNAM,分别交BDAD于点FN,连结AFCE.判断四边形AECF的形状,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

A.(不等式选讲)不等式的解集是                     .
B.(坐标系与参数方程)在极坐标中,圆的圆心到直线的距离为        .
C.(几何证明选讲)圆的外接圆,过点的圆的切线与的延长线交于点
,则的长为        .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,如图,在平行四边形ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.

(1)求证:△AEM ≌△CFN;
(2)求证:四边形BMDN是平行四边形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)
如图,在中,平分于点,点上,
(I)求证:的外接圆的切线;
(II)若,求的长。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知圆和定点,由圆外一点向圆引切线,切点为,且满足.

(1)求实数间满足的等量关系式;
(2)求面积的最小值;
(3)求的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

(几何证明选讲选做题) 如图,AB 是圆O的直径,弦AD和BC 相交于点P,连接CD.若∠APB=120°,则等于        

查看答案和解析>>

同步练习册答案