精英家教网 > 高中数学 > 题目详情
6.已知$-\frac{π}{2}<x<0,sinx+cosx=\frac{1}{5}$,则$\frac{1}{{{{cos}^2}x-{{sin}^2}x}}$=$\frac{25}{7}$.

分析 先由条件求得sinxcosx=-$\frac{12}{25}$,cosx-sinx=$\sqrt{{(cosx-sinx)}^{2}}$=$\frac{7}{5}$,可得$\frac{1}{{{{cos}^2}x-{{sin}^2}x}}$=$\frac{1}{(cosx+sinx)•(cosx-sinx)}$ 的值.

解答 解:∵$-\frac{π}{2}<x<0,sinx+cosx=\frac{1}{5}$,∴平方可得sinxcosx=-$\frac{12}{25}$,
∴cosx-sinx=$\sqrt{{(cosx-sinx)}^{2}}$=$\sqrt{1-2sinxcosx}$=$\frac{7}{5}$,
则$\frac{1}{{{{cos}^2}x-{{sin}^2}x}}$=$\frac{1}{(cosx+sinx)•(cosx-sinx)}$=$\frac{1}{\frac{1}{5}•\frac{7}{5}}$=$\frac{25}{7}$,
故答案为:$\frac{25}{7}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.A={x|x≤1,x∈R},则∁RA={x|x>1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知sinα和cosα是方程x2-kx+k+1=0的两根,且π<α<2π,则α+k=$\frac{3π}{2}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知点P(-4,3)在角α终边上.
(Ⅰ)求sinα、cosα和tanα的值;
(Ⅱ)求$\frac{{{{sin}^2}(α-\frac{π}{2})tan(π-α)sin(π-α)}}{{cos(α-3π)cos(\frac{3π}{2}+α)}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=alnx+$\frac{2{a}^{2}}{x}$+x(a≠0).
(1)若函数y=f(x)在点(1,f(1))处的切线与直线x-2y+3=0垂直,求实数a的值;
(2)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知椭圆$\frac{x^2}{4}+{y^2}$=1,P为x轴上一个动点,PA、PB为该椭圆的两条切线,A、B为切点,则$\overrightarrow{PA}•\overrightarrow{PB}$的最小值为4$\sqrt{5}$-9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.数列{an}的通项公式是an=(-1)n(3n-2),则该数列的前100项之和为(  )
A.-200B.-150C.200D.150

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某中学对甲、乙两文班进行数学测试,按照120分及以上为优秀,否则为非优秀统计成绩得下表:
优秀非优秀合计
302050
203050
合计5050100
(1)用分层抽样的方法在优秀学生中选取5人,甲班抽多少人?
(2)从上述5人中选2人,求至少有1名乙班学生的概率;
(3)有多大的把握认为“成绩与班级有关”?
D0.050.010.0050.001
k23.8416.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)是定义在{x|x≠0}上的偶函数,且当x>0时,f(x)=log2x.
(1)求出函数f(x)的解析式;
(2)画出函数|f(x)|的图象,并根据图象写出函数|f(x)|的增区间.

查看答案和解析>>

同步练习册答案