精英家教网 > 高中数学 > 题目详情
14.已知点P(-4,3)在角α终边上.
(Ⅰ)求sinα、cosα和tanα的值;
(Ⅱ)求$\frac{{{{sin}^2}(α-\frac{π}{2})tan(π-α)sin(π-α)}}{{cos(α-3π)cos(\frac{3π}{2}+α)}}$的值.

分析 (1)由条件利用任意角的三角函数的定义,求得sinα、cosα和tanα的值.
(Ⅱ)利用 诱导公式求得$\frac{{{{sin}^2}(α-\frac{π}{2})tan(π-α)sin(π-α)}}{{cos(α-3π)cos(\frac{3π}{2}+α)}}$的值.

解答 解:(Ⅰ)∵点P(-4,3)在角α终边上,∴x=-4,y=3,r=|OP|=5,
∴sinα=$\frac{y}{r}$=$\frac{3}{5}$,cosα=$\frac{x}{r}$=-$\frac{4}{5}$,tanα=$\frac{y}{x}$=-$\frac{3}{4}$.
(Ⅱ)$\frac{{{{sin}^2}(α-\frac{π}{2})tan(π-α)sin(π-α)}}{{cos(α-3π)cos(\frac{3π}{2}+α)}}$=$\frac{{cos}^{2}α•(-tanα)•sinα}{-cosα•sinα}$=$\frac{cosα{•sin}^{2}α}{cosα•sinα}$=sinα=$\frac{3}{5}$.

点评 本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.在平面直角坐标系中,已知两点A(2,-1)和B(-1,5),点P满足$\overrightarrow{AP}$=2$\overrightarrow{PB}$,则点P的坐标为(0,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在一次数学测验后,班级学委对选答题的选题情况进行了统计,如下表:(单位:人)
几何证明选讲坐标系与参数方程不等式选讲合计
男同学124622
女同学081220
合计12121842
在原统计结果中,如果不考虑性别因素,按分层抽样的方法从选做不同选做题的同学中随机选出7名同学进行座谈.已知两名数学科代表都在选做《不等式选讲》的同学中.
(Ⅰ)求在选做“坐标系与参数方程”的同学中,至少有一名女生参加座谈的概率;
(Ⅱ)记抽到数学科代表的人数为X,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若O为坐标原点,A(2,0),点P(x,y)坐标满足$\left\{\begin{array}{l}x-4y+3≤0\\ 3x+5y≤25\\ x≥1\end{array}$,则|$\overrightarrow{OP}$|cos∠AOP的最大值为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=$\sqrt{lo{g}_{\frac{1}{2}}(5x-2)}$的定义域是(  )
A.[$\frac{3}{5}$,+∞)B.($\frac{2}{5}$,+∞)C.[$\frac{2}{5}$,$\frac{3}{5}$]D.($\frac{2}{5}$,$\frac{3}{5}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.平面内动点P(x,y)与两定点A(-2,0),B(2,0)连线的斜率之积等于$-\frac{1}{4}$,若点P的轨迹为曲线E,过点$Q(-\frac{6}{5},0)$直线l交曲线E于M,N两点.
(1)求曲线E的方程,并证明:∠MAN为90°;
(2)若四边形AMBN的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$-\frac{π}{2}<x<0,sinx+cosx=\frac{1}{5}$,则$\frac{1}{{{{cos}^2}x-{{sin}^2}x}}$=$\frac{25}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在边长为2的菱形ABCD中,∠BAD=120°,则$\overrightarrow{AB}$在$\overrightarrow{AC}$方向上的投影为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=sinx•cosx,则f′($\frac{π}{2}$)=-1.

查看答案和解析>>

同步练习册答案