精英家教网 > 高中数学 > 题目详情
13.设x1、x2是方程x2+3$\sqrt{3}$x+4=0的两根,求arctanx1+arctanx2的值.

分析 由条件利用韦达定理求得x1+x2 =-3$\sqrt{3}$,x1•x2=4,再利用两角和的正切公式求得tan(arctanx1+arctanx2)的值,可得arctanx1+arctanx2 的值.

解答 解:由x1、x2是方程x2+3$\sqrt{3}$x+4=0的两根,可得x1+x2 =-3$\sqrt{3}$,x1•x2=4,
故x1、x2均小于零,故arctanx1+arctanx2∈(-π,0),
且tan(arctanx1+arctanx2)=$\frac{{tan(arctanx}_{1}{)+tan(arctanx}_{2})}{1-tan(arcta{nx}_{1})•tan(arcta{nx}_{2})}$=$\frac{{x}_{1}{+x}_{2}}{1{-x}_{1}{•x}_{2}}$=$\sqrt{3}$,
∴arctanx1+arctanx2=-$\frac{2π}{3}$.

点评 本题主要考查韦达定理,两角和的正切公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}+{y^2}=1({a>1})$的左、右焦点分别为F1(-c,0)、F2(c,0),P为椭圆C上任意一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$最小值为0.
(Ⅰ)求曲线C的方程;
(Ⅱ)若动直线l2,l2均与椭圆C相切,且l1∥l2,试探究在x轴上是否存在定点B,使得点B到l1,l2的距离之积恒为1?若存在,请求出点B的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知O为坐标原点,点A(1,1),点P(x,y)在曲线y=$\frac{9}{x}$(x>0)上运动,则$\overrightarrow{OA}•\overrightarrow{OP}$的最小值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在复平面上曲线C对应的点满足|z-2-2i|=|z|,则点A(0,2)与曲线C上的点之间的最小距离为0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.当m=4,n=3时,运行如图所示的程序框图,将输出的a、i代入二项式(x2-$\frac{i}{x}$)a中,则此二项式的展开式中含x3项的系数为(  )
A.37${C}_{12}^{7}$B.38${C}_{12}^{8}$C.-33${C}_{12}^{3}$D.-37${C}_{12}^{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A、B、C所对的边分别是a、b、c,已知cos$\frac{C}{2}$=$\frac{\sqrt{6}}{3}$.
(I)求cosC的值;
(II)若acosB+bcosA=2,且S△ABC=9$\sqrt{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设x=sin2α+sin(α+$\frac{π}{3}$)sin(α+$\frac{2π}{3}$),当α=$\frac{67π}{2014}$时,x的小数点后第一位数字为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.(4x-2-x8展开式中含2x项的系数是-56.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的右焦点F作渐近线的垂线,垂足为P,过P作y轴的垂线交另一渐近线为Q,若△OFP的面积是△OPQ的面积的4倍,则双曲线的离心率为(  )
A.$\frac{\sqrt{5}}{2}$B.$\sqrt{2}$C.2$\sqrt{2}$D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案