| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
分析 求出双曲线的渐近线方程,运用两直线垂直的条件:斜率之积为-1,可得PF的方程,联立渐近线方程,解得交点P的坐标,由对称性可得Q的坐标,运用三角形的面积公式,结合离心率公式,即可得到所求值.
解答 解:双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a,b>0)$的渐近线方程为y=±$\frac{b}{a}$x,
右焦点F(c,0),
由题意可得直线PF的方程为y=-$\frac{a}{b}$(x-c),
联立渐近线方程y=$\frac{b}{a}$x,可得P($\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由对称性可得Q(-$\frac{{a}^{2}}{c}$,$\frac{ab}{c}$),
由△OFP的面积是△OPQ的面积的4倍,
可得$\frac{1}{2}$c•$\frac{ab}{c}$=4•$\frac{1}{2}$•$\frac{2{a}^{2}}{c}$•$\frac{ab}{c}$,
即有c2=8a2,e=$\frac{c}{a}$=2$\sqrt{2}$,
故选:C.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,以及三角形的面积公式,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=2x-3 | B. | y=2x-1 | C. | y=x-3 | D. | y=x-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲 | 80 | 110 | 120 | 140 | 150 |
| 乙 | 100 | 120 | x | 100 | 160 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1-\sqrt{3}}{2}$+$\frac{1+\sqrt{3}}{2}$i | B. | $\frac{1-\sqrt{3}}{2}$-$\frac{1+\sqrt{3}}{2}$i | C. | $\frac{1+\sqrt{3}}{2}$+$\frac{1-\sqrt{3}}{2}$i | D. | $\frac{1+\sqrt{3}}{2}$-$\frac{1-\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∨q | C. | (¬p)∧(¬q) | D. | p∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com