分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最小值.
解答
解:作出不等式组$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$对应的平面区域如图,
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z,经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{y=x}\\{x+y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即A(1,1),
此时z的最小值为z=2×1+1=3,
故答案为:3.
点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 0或1 | D. | 无数个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{2}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=x2|x| | B. | f(x)=-xe|x| | ||
| C. | f(x)=$\left\{\begin{array}{l}{lg(x+1),x≥0}\\{lg(1-x),x<0}\\{\;}\end{array}\right.$ | D. | f(x)=x+sinx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,3,4} | B. | {0,2,4} | C. | {2,4} | D. | {3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$+1 | B. | $\sqrt{2}$+1 | C. | $\frac{\sqrt{3}+1}{2}$ | D. | $\frac{\sqrt{2}+1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>c>b | B. | a>b>c | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com