精英家教网 > 高中数学 > 题目详情
20.在(1+x)6的二项展开式中,x2项的系数为(  )
A.2B.6C.15D.20

分析 根据二项展开式的通项公式求出展开式的特定项即可.

解答 解:(1+x)6的二项展开式中,通项公式为:
Tr+1=${C}_{6}^{r}$•16-r•xr
令r=2,得展开式中x2的系数为:
${C}_{6}^{2}$=15.
故选:C.

点评 本题考查了二项展开式通项公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.设x,y满足$\left\{\begin{array}{l}{y≤x}\\{x+y≥2}\\{y≥3x-6}\end{array}\right.$,则z=2x+y的最小值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知i为虚数单位,满足z(1+2i)=3+4i,则复数z所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知双曲线C的方程$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1,其左、右焦点分别是F1,F2,已知点M坐标为(2,1).双曲线C上点P(x0,y0)(x0>0,y0>0)满足$\overrightarrow{OM}$=$\overrightarrow{OP}$+λ($\frac{\overrightarrow{P{F}_{1}}}{|\overrightarrow{P{F}_{1}}|}$+$\frac{\overrightarrow{P{F}_{2}}}{|P{F}_{2}|}$),则S${\;}_{△PM{F}_{1}}$-S${\;}_{△PM{F}_{2}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\sqrt{2}$cos(x+$\frac{π}{4}$),把f(x)的图象按向量$\overrightarrow{v}$=(m,0)(m>0)平移后,所得图象恰好为函数y=f′(x),则m的最小值为$\frac{3π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=ax-2-lnx(a∈R).
(1)若f(x)在点(e,f(e))处的切线斜率为$\frac{1}{e}$,求a的值;
(2)当a>0时,求f(x)的单调区间;
(3)若g(x)=ax-ex,求证:在x>0时,f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.把5名新同学分配到高一年级的A,B,C三个班,每班至少分配一人,若A班要分配2人,则不同的分配方法的种数为(  )
A.90B.80C.60D.30

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1(a>0)的右顶点到其一条渐近线的距离等于$\frac{\sqrt{3}}{4}$,抛物线E:y2=2px的焦点与双曲线C的右焦点重合,直线l的方程为x-y+4=0,在抛物线上有一动点M到y轴的距离为d1,到直线l的距离为d2,则d1+d2的最小值为(  )
A.$\frac{5\sqrt{2}}{2}$+2B.$\frac{5\sqrt{2}}{2}$+1C.$\frac{5\sqrt{2}}{2}$-2D.$\frac{5\sqrt{2}}{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的实轴的两个端点为A、B,P为此双曲线上的动点,直线AP、BP的斜率均存在,分别为k1、k2.当表达式k1k2-2(ln|k1|+ln|k2|)取得最小值时,对应的双曲线的离心率为(  )
A.2B.3C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案