精英家教网 > 高中数学 > 题目详情
11.已知i为虚数单位,满足z(1+2i)=3+4i,则复数z所在的象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 根据复数的几何意义,即可得到结论.

解答 解:∵z(1+2i)=3+4i,
∴z=$\frac{3+4i}{1+2i}$=$\frac{11}{5}$-$\frac{2}{5}$i,对应的坐标为($\frac{11}{5}$,-$\frac{2}{5}$),
位于第四象限,
故选:D.

点评 本题主要考查复数的几何意义,利用复数的基本运算即可得到结论,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为(  )
A.0B.1C.0或1D.无数个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.双曲线M:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点是Fl,F2,抛物线N:y2=2px(p>0)的焦点为F2,点P是双曲线M与抛物线N的一个交点,若PF1的中点在y轴上,则该双曲线的离心率为(  )
A.$\sqrt{3}$+1B.$\sqrt{2}$+1C.$\frac{\sqrt{3}+1}{2}$D.$\frac{\sqrt{2}+1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a=log0.60.4,b=log0.60.7,c=log1.50.6,则a,b,c的大小关系是(  )
A.a>c>bB.a>b>cC.c>a>bD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.对?α∈R,n∈[0,2],向量$\overrightarrow{c}$=(2n+3cosα,n-3sinα)的长度不超过6的概率为(  )
A.$\frac{\sqrt{5}}{10}$B.$\frac{2\sqrt{5}}{10}$C.$\frac{3\sqrt{5}}{10}$D.$\frac{2\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知a>0且a≠1,x>0,下列关于三个函数f(x)=ax,g(x)=xa,h(x)=logax的说法正确的是(  )
A.三个函数的单调性总相同
B.当1<a<2时,对任意x>0,f(x)>g(x)>h(x)
C.当a>1时,三个函数没有公共点
D.任意a>1,三个函数都与直线y=x相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.定义在R上的偶函数f(x)在区间[-1,0]上为增函数,且满足f(x+1)=-f(x),则(  )
A.f($\sqrt{2}$)<f(2)<f(3)B.f(2)<f(3)<f($\sqrt{2}$)C.f(3)<f(2)<f($\sqrt{2}$)D.f(3)<f($\sqrt{2}$)<f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在(1+x)6的二项展开式中,x2项的系数为(  )
A.2B.6C.15D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=\;cos(\frac{π}{2}-x)cosx-{sin^2}x+\frac{1}{2}$,x∈R.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若$x∈[-\frac{π}{6},\frac{π}{3}]$,求函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案