精英家教网 > 高中数学 > 题目详情
11.已知函数f(x)=lnx+$\frac{1}{2}$x2-$\frac{5}{2}$x.
(Ⅰ)求函数f(x)在[$\frac{1}{4}$,2]上的值域;
(Ⅱ)设x1,x2(x1<x2)是函数g(x)=f(x)-(b-$\frac{3}{2}$)x的两个极值点,若b≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求实数k的取值范围.

分析 (Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的值域即可;
(Ⅱ)求函数的导数,表示出x1 的范围,构造函数F(x)=2lnx-$\frac{1}{2}$(x2-$\frac{1}{{x}^{2}}$)(0<x≤$\frac{1}{2}$),根据函数的单调性求出k的范围即可.

解答 解:(Ⅰ)f′(x)=$\frac{(x-2)(2x-1)}{2x}$,x∈[$\frac{1}{4}$,2],
令f′(x)>0,解得:$\frac{1}{4}$≤x<$\frac{1}{2}$,令f′(x)<0,解得:$\frac{1}{2}$<x≤2,
∴f(x)在[$\frac{1}{4}$,$\frac{1}{2}$)递增,在($\frac{1}{2}$,2]递减,
∴x=$\frac{1}{2}$时,f(x)最大值=f($\frac{1}{2}$)=-ln2-$\frac{9}{8}$,
而f($\frac{1}{4}$)-f(2)=-ln8+$\frac{45}{32}$<0,
故f(x)的值域是[-ln4-$\frac{19}{32}$,-ln2-$\frac{9}{8}$];
(Ⅱ)∵g(x)=lnx+$\frac{1}{2}$x2-(b+1)x,
∴g′(x)=$\frac{1}{x}$+x-(b+1)=$\frac{{x}^{2}-(b+1)x+1}{x}$,
由g′(x)=0得x2-(b+1)x+1=0
∴x1+x2=b+1,x1x2=1,
∴x2=$\frac{1}{{x}_{1}}$,
∵b≥$\frac{3}{2}$,∴$\left\{\begin{array}{l}{{x}_{1}+\frac{1}{{x}_{1}}≥\frac{5}{2}}\\{0{<x}_{1}<\frac{1}{{x}_{1}}}\end{array}\right.$,解得:0<x1≤$\frac{1}{2}$,
∴g(x1)-g(x2)=ln $\frac{{x}_{1}}{{x}_{2}}$+$\frac{1}{2}$(x12-x22)-(b+1)(x1-x2)=2lnx1-$\frac{1}{2}$(x12-$\frac{1}{{{x}_{1}}^{2}}$),
设F(x)=2lnx-$\frac{1}{2}$(x2-$\frac{1}{{x}^{2}}$)(0<x≤$\frac{1}{2}$),
则F′(x)=$\frac{2}{x}$-x-$\frac{1}{{x}^{3}}$=$\frac{{-{(x}^{2}-1)}^{2}}{{x}^{3}}$<0
∴F(x)在(0,$\frac{1}{2}$]上单调递减; 
∴当x1=$\frac{1}{2}$时,F(x)min=F($\frac{1}{2}$)=$\frac{15}{8}$-2ln2,
∴k≤$\frac{15}{8}$-2ln2.

点评 本题主要考查导数的综合应用,求函数的导数,利用函数的极值,最值和导数之间是关系是解决本题的关键.综合性较强,运算量较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.设等差数列{an}的前n项和为Sn,若S6>S7>S5,则an>0的最大n=6,满足SkSk+1<0的正整数k=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=x-1+$\frac{a}{{e}^{x}}$(x∈R,e为自然对数的底数).
(1)求函数f(x)的极值;
(2)当a=1时,若直线l:y=kx-1与曲线y=f(x)没有公共点,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x)=-x|x|,则(  )
A.f(x)既是奇函数又是增函数B.f(x)既是偶函数又是增函数
C.f(x)既是奇函数又是减函数D.f(x)既是偶函数又是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设[x]表示不超过x的最大整数,对任意实数x,下面式子正确的是(  )
A.[x]=|x|B.[x]≥$\sqrt{x^2}$C.[x]>-xD.[x]>x-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知在三棱锥P-ABC中,PA⊥平面ABC,AB=AC=PA=2,且在△ABC中,∠BAC=120°,则三棱锥P-ABC的外接球的体积为$\frac{{20\sqrt{5}π}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.△ABC中∠A=90°,AB=2,AC=3,设P、Q满足$\overline{AP}=λ\overline{AB},\overline{AQ}=(1-λ)\overline{AC},λ∈R$,若$\overline{BQ}•\overline{CP}=1$,则λ=(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.$\int_{-2}^2{{e^{|x|}}}$dx=(  )
A.e2+1B.2e2-1C.2e2-2D.e2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知x+2y=6,则2x+4y的最小值为16.

查看答案和解析>>

同步练习册答案