分析 (1)求出f(x)的导数,讨论当a≤0时,f′(x)>0,f(x)无极值;当a>0时,由f′(x)=0,得ex=a,x=lna,求得单调区间,可得f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值;
(2)令g(x)=f(x)-(kx-1)=(1-k)x+$\frac{1}{{e}^{x}}$,则直线l:y=kx-1与曲线y=f(x)没有公共点?方程g(x)=0在R上没有实数解,分k>1与k≤1讨论即可得答案.
解答 解:(1)由f(x)=x-1+$\frac{a}{{e}^{x}}$,可得导数f′(x)=1-$\frac{a}{{e}^{x}}$,
①当a≤0时,f′(x)>0,
f(x)为(-∞,+∞)上的增函数,则f(x)无极值;
②当a>0时,由f′(x)=0,得ex=a,即x=lna,
x∈(-∞,lna),f′(x)<0,x∈(lna,+∞),f′(x)>0,
即有f(x)在∈(-∞,lna)上单调递减,在(lna,+∞)上单调递增,
故f(x)在x=lna处取到极小值,且极小值为f(lna)=lna,无极大值.
综上,当a≤0时,f(x)无极值;
当a>0时,f(x)在x=lna处取到极小值lna,无极大值;
(2)当a=1时,f(x)=x-1+$\frac{1}{{e}^{x}}$,
令g(x)=f(x)-(kx-1)=(1-k)x+$\frac{1}{{e}^{x}}$,
则直线l:y=kx-1与曲线y=f(x)没有公共点,
等价于方程g(x)=0在R上没有实数解.
假设k>1,此时g(0)=1>0,g($\frac{1}{k-1}$)=-1+$\frac{1}{{e}^{\frac{1}{k-1}}}$<0,
又函数g(x)的图象连续不断,由零点存在定理可知g(x)=0在R上至少有一解,
与“方程g(x)=0在R上没有实数解”矛盾,故k≤1.
又k=1时,g(x)=$\frac{1}{{e}^{x}}$>0,知方程g(x)=0在R上没有实数解,
所以k的最大值为1.
点评 本题考查利用导数研究函数的极值,考查函数方程的转化思想,注意运用零点存在定理,突出分类讨论思想的运用,属于中档题.
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{2},+∞})$ | B. | (-∞,2] | C. | $({0,\frac{1}{2}}]$ | D. | (0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -2 | C. | -$\frac{1}{2}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{6}$π | B. | 2$\sqrt{2}$π | C. | 2π | D. | 6π |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com