精英家教网 > 高中数学 > 题目详情
2.空间三条线段AB,BC,CD,AB⊥BC,BC⊥CD,已知AB=3,BC=4,CD=6,则AD的取值范围是[5,$\sqrt{97}$].

分析 由题意,三条线段处于同一平面时,AD取得最小值与最大值.利用勾股定理得出结论.

解答 解:由题意,三条线段处于同一平面时,AD取得最小值与最大值.
当AB、CD在BC同侧时AD最小为5;
当AB、CD分别在BC两侧时AD最大为$\sqrt{16+(3+6)^{2}}$=$\sqrt{97}$.
∴AD的取值范围是[5,$\sqrt{97}$].

点评 本题考查空间距离的计算,考查学生分析解决问题的能力,确定三条线段处于同一平面时,AD取得最小值与最大值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=lnx+ax-x2(a∈R).
(1)若f(x)≤0恒成立,求实数a的取值范围;
(2)证明ln(n+1)<$\frac{2}{{1}^{2}}$+$\frac{3}{{2}^{2}}$+…+$\frac{n+1}{{n}^{2}}$(n为正整数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,平面PAD⊥底面ABCD,AB∥CD,PA=PD=AD=1,DC=2AB=4AD,∠ADC=120°,E为PC的中点.
(1)求证:直线BE∥平面PAD;
(2)求二面角P-BD-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知直线l的参数方程为$\left\{\begin{array}{l}x=-4t+a\\ y=3t-1\end{array}\right.$(t为参数),在直角坐标系xOy中,以O点为极点,x轴的非负半轴为极轴,以相同的长度单位建立极坐标系,设圆M的方程为ρ2-6ρsinθ=-8.
(Ⅰ)求圆M的直角坐标方程;
(Ⅱ)若直线l截圆M所得弦长为$\sqrt{3}$,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,四棱锥P-ABCD中,PD⊥底面ABCD,PD=DC=2AD,AD⊥DC,∠BCD=45°.
(1)设PD的中点为M,求证:AM∥平面PBC;
(2)求PA与平面PBC所成角的正弦值;
(3)设DC=a,求点D到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若向量$\overrightarrow{n}$=(1,1,0)垂直于经过点A(2,0,2)的动直线l,设d为点P(-4,0,2)到直线l的距离,则dmin:dmax等于(  )
A.1:2B.1:$\sqrt{2}$C.1:$\sqrt{3}$D.1:3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正方体ABCD-A1B1C1D1,异面直线A1C1与B1C所成的角是60°,直线A1C与平面ABCD所成角的正切值是$\frac{\sqrt{2}}{2}$,二面角A1-BD-A所成角的值是arctan$\sqrt{2}$,直线B1C1到平面ABCD的距离为B1B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,点P为曲线C:x2+y2-2x-2y=0上一点,点M为线段OP中点,以坐标原点为极点,x轴非负半轴为极轴,建立极坐标系.
(Ⅰ)求点M轨迹E的极坐标方程;
(Ⅱ)直线l1:y=$\sqrt{3}$x,l2:y=$\frac{\sqrt{3}}{3}$x与轨迹E的交点分别为A,B,求△AOB的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.由曲线y=|x-1|与(x-1)2+y2=4所围成较小扇形的面积是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

同步练习册答案