精英家教网 > 高中数学 > 题目详情
8.如图,$\overrightarrow{OA}$、$\overrightarrow{OB}$、$\overrightarrow{OC}$的终点A、B、C在一条直线上,且$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,则以下等式成立的是(  )
A.$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{3}{2}$$\overrightarrow{OB}$B.$\overrightarrow{OC}$=-$\overrightarrow{OA}$+2$\overrightarrow{OB}$C.$\overrightarrow{OC}$=$\frac{3}{2}$$\overrightarrow{OA}$-$\frac{1}{2}$$\overrightarrow{OB}$D.$\overrightarrow{OC}$=$\overrightarrow{OA}$-2$\overrightarrow{OB}$

分析 利用向量的三角形法则即可得出.

解答 解:如图所示
∵$\overrightarrow{AC}$=-3$\overrightarrow{CB}$,
∴$\overrightarrow{OC}-\overrightarrow{OA}$=-3$(\overrightarrow{OB}-\overrightarrow{OC})$,
可得:$\overrightarrow{OC}$=-$\frac{1}{2}$$\overrightarrow{OA}$+$\frac{3}{2}$$\overrightarrow{OB}$.
故选:A.

点评 本题考查了向量的三角形法则、线性运算,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知抛物线M:x2=4y,圆C:x2+(y-3)2=4,在抛物线M上任取一点P,向圆C作两条切线PA和PB,切点分别为A,B,则$\overrightarrow{CA}•\overrightarrow{CB}$的最大值为(  )
A.$-\frac{4}{9}$B.$-\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出S的值为8,则n的最小正整数为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知△ABC的内角A,B,C的对边分别为a,b,c,且sin(A-B)+sinC=1.
(1)求sinAcosB的值;
(2)若a=2b,求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}中,a1+a3+a5=105,a4=33,则a20等于(  )
A.-1B.1C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,正四棱锥P-ABCD中,AB=2,PA=$\sqrt{5}$.
(1)求侧面PAD与侧面PBC所成二面角的大小;
(2)在直线PA上是否存在点E,使CE⊥平面PAD.若存在,指出点E的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.为应对我国人口老龄化问题,某研究院设计了延迟退休方案,第一步:2017年女干部和女工人退休年龄统一规定为55岁;第二步:从2018年开始,女性退休年龄每3年延迟1岁,至2045年时,退休年龄统一规定为65岁,小明的母亲是出生于1964年女干部,据此方案,她退休的年份是2020年.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{log3(an-1)}(n∈N*)的前n项和为Sn,且a2=10,S7=28.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{{a_{n+1}}-{a_n}}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.设f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+1,x≥0}\\{{2}^{x},x<0}\end{array}\right.$,若f(a)=3,则a=4.

查看答案和解析>>

同步练习册答案