精英家教网 > 高中数学 > 题目详情
7.如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N)个点,每个图形总的点数记为an,则a6=15;$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2015}}{a_{2016}}}}$=$\frac{2014}{2015}$.

分析 根据图象的规律可得出通项公式an,根据数列的特点可用列项法求其前n项和的公式,而$\frac{9}{{{a_2}{a_3}}}$+$\frac{9}{{{a_3}{a_4}}}$+$\frac{9}{{{a_4}{a_5}}}$+…+$\frac{9}{{{a_{2015}}{a_{2016}}}}$是前2014项的和,代入前n项和公式即可得到答案.

解答 解:每个边有n个点,把每个边的点数相加得3n,这样角上的点数被重复计算了一次,故第n个图形的点数为3n-3,即an=3n-3,∴a6=15;
令Sn=$\frac{1}{1×2}+\frac{1}{2×3}$+…+$\frac{1}{2014×2015}$=1-$\frac{1}{2}$+$\frac{1}{2}-\frac{1}{3}$+…+$\frac{1}{2014}$-$\frac{1}{2015}$=$\frac{2014}{2015}$.
故答案为15;$\frac{2014}{2015}$

点评 本题主要考查简单的和清推理,求等差数列的通项公式和用裂项法对数列进行求和问题,同时考查了计算能力,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.(1)化下列曲线的极坐标方程为直角坐标方程:①ρ=4sinθ②ρ2cos2θ=16
(2)直线方程2x-y+7=0化为极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.为了调查每天微信用户使用微信的时间,某经销化妆品分微商在一广场随机采访男性、女性用户各50名,其中每天玩微信超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如下:
微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从调查的女性用户中按分层抽样的方法选出5人赠送营养面膜各1份,再从抽取的这5人中再随机抽取3人赠送200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列和数学期望.
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参考数据:
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3213.8405.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知直线l的参数方程为$\left\{{\begin{array}{l}{x=-4+\frac{{\sqrt{3}}}{2}t}\\{y=\frac{1}{2}t}\end{array}}\right.$(t为参数),则直线l的倾斜角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知f(x)为定义在(-∞,+∞)上的可导函数,且f(x)>f′(x)对于x∈R恒成立(e为自然对数的底),则(  )
A.e2015•f(2016)>e2016•f(2015)
B.e2016•f(2016)=e2016•f(2015)
C.e2015•f(2016)<e2016•f(2015)
D.e2015•f(2016)与e2016•f(2015)大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=sinx-cosx+1,x∈R.
(1)求f(x)的最小正周期和最大值;
(2)求f(x)的递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C的一个焦点为$(0,\sqrt{3})$,且经过点$P(\frac{1}{2},\sqrt{3})$.
(1)求椭圆C的标准方程;
(2)已知A(1,0),直线l与椭圆C交于M,N两点,且AM⊥AN;
(ⅰ)若|AM|=|AN|,求直线l的方程;
(ⅱ)若AH⊥MN于H,求点H的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)的导数为f′(x)=4x3-4x,且图象过定点(0,-5),求函数f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在棱长为6的正方体ABCD-A1B1C1D1中,M、N分别是A1B、CC1的中点,设过D、M、N三点的平面与B1C1交于点P,则PM+PN的值为5+$\sqrt{13}$.

查看答案和解析>>

同步练习册答案