精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,底面是菱形,,且侧面平面,点是棱的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:
(Ⅲ)若,求证:平面平面.

详见解析.

解析试题分析:(Ⅰ)由底面是菱形,可得再根据线面平行的性质定理可直接证得平面。(Ⅱ)由面面垂直的性质定理可证得平面,即可证得。(Ⅲ)当为正三角形,可得,可根据面的性质定理证得,再根据面面垂直的判定定理可证得面平面。法二时,因为(Ⅱ)中已证,根据线面垂直的判定定理可得平面,从而证得面平面
试题解析:解:(Ⅰ)因为底面是菱形,
所以.             1分
又因为平面,        3分
所以平面.           4分
(Ⅱ)因为,点是棱的中点,

所以.                                          5分
因为平面平面,平面平面,平面,       7分
所以平面,                                   8分
因为平面,
所以.                                        9分
(Ⅲ)因为,点是棱的中点,
所以.                                          10分
由(Ⅱ)可得,                               11分
所以平面,                                   13分
又因为平面,
所以平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥中,,,侧面为等边三角形

(1)证明:
(2)求AB与平面SBC所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知三棱柱中,平面⊥平面ABC,BC⊥AC,D为AC的中点,AC=BC=AA1=A1C=2。

(Ⅰ)求证:AC1⊥平面A1BC;
(Ⅱ)求平面AA1B与平面A1BC的夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面是正方形,⊥平面

(1)求证:
(2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,正三棱柱ABC-A'B'C'中,D是BC的中点,AA'=AB=2.

(1)求证:A'C//平面AB'D;
(2)求二面角D一AB'一B的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AB=5,AA1=4,点D是AB的中点.

(1)求证:∥平面
(2)求证:AC⊥BC1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,已知三棱锥A-BPC中,AP⊥PC,AC⊥BC,M为AB的中点,D为PB的中点,且△PMB为正三角形.

(1)求证:DM∥平面APC; (2)求证:平面ABC⊥平面APC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

右图为一组合体,其底面为正方形,平面,且

(Ⅰ)求证:平面
(Ⅱ)求四棱锥的体积;
(Ⅲ)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥S-ABC中,△ABC是边长为4的正三角形,平面SAC⊥平面ABC,,分别为的中点.

(1)求二面角的余弦值;
(2)求点到平面的距离.

查看答案和解析>>

同步练习册答案