精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=$\left\{{\begin{array}{l}{x^2}\\{-{x^2}}\end{array}}\right.\begin{array}{l}{(x≥0)}\\{(x<0)}\end{array}$,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是[$\sqrt{2}$,+∞).

分析 由当x<0时,f(x)=-x2,x≥0时,f(x)=x2,从而f(x)在R上是单调递增函数,且满足2f(x)=f($\sqrt{2}$x),再根据不等式f(x+t)≥2f(x)=f($\sqrt{2}$x)在[t,t+2]恒成立,可得x+t≥$\sqrt{2}$x在[t,t+2]恒成立,计算即可得出答案.

解答 解:当x<0时,f(x)=-x2递增
,当x≥0时,f(x)=x2递增,
函数f(x)=$\left\{{\begin{array}{l}{x^2}\\{-{x^2}}\end{array}}\right.\begin{array}{l}{(x≥0)}\\{(x<0)}\end{array}$,在R上是单调递增函数,
且满足2f(x)=f($\sqrt{2}$x),
∵不等式f(x+t)≥2f(x)=f($\sqrt{2}$x)在[t,t+2]恒成立,
∴x+t≥$\sqrt{2}$x在[t,t+2]恒成立,
即:t≥($\sqrt{2}$-1)x在 x∈[t,t+2]恒成立,
∴t≥($\sqrt{2}$-1)(t+2),
解得:t≥$\sqrt{2}$,
故答案为:$[\sqrt{2},+∞)$.

点评 本题考查了函数恒成立问题及函数的单调性,难度适中,关键是掌握函数的单调性的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设f(x)=$\left\{\begin{array}{l}{{k}^{2}x+{a}^{2}-k,(x≥0)}\\{{x}^{2}+({a}^{2}+4a)x+(3-a)^{2},(x<0)}\end{array}\right.$,其中a∈R.若对任意的非零实数x1,存在唯一的非零实数x2(x1≠x2),使得f(x1)=f(x2)成立,则k的取值范围为(  )
A.RB.[-4,0]C.[9,33]D.[-33,-9]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*
(1)求数列{an}的通项公式;
(2)记数列{bn}满足an=4log2bn+3,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow a$、$\overrightarrow b$满足|$\overrightarrowa}$|=2,|$\overrightarrow b}$|=3,且|2$\overrightarrow a}$-$\overrightarrow b}$|=$\sqrt{13}$,则|2$\overrightarrow a}$+$\overrightarrow b}$|=$\sqrt{37}$向量$\overrightarrow a$在向量$\overrightarrow b$方向上的投影为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设a>b>0,试比较$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$与$\frac{a-b}{a+b}$的大小.
(2)设不等式x2-4x+3<0的解集为A,不等式x2+x-6>0的解集为B.若不等式x2+ax+b<0的解集为A∩B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=alnx+$\frac{1}{x}$(a∈R)
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)是否存在实数a,使得函数g(x)=f(x)-2x在(0,+∞)上单调递减?若存在,求出a的取值范围;若不存在,请说明理由;
(Ⅲ)当a>0时,讨论函数y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.李克强总理4月22日(世界读书日前一天)在厦门大学考察时,指出世界读书日虽然只有一天,但我们应该天天读书,这种好习惯会让我们终身受益.
某中学在此期间开展了一系列的读书教育活动.为了解本校学生课外阅读情况,学校随机抽取了100名学生进行调查.右侧是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图.若将日均阅读时间
不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.
(Ⅰ)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?
非读书迷读书迷总计
15
45
总计
P(K2≥k10.1000.0500.0100.001
k12.7063.8416.63510.828
(Ⅱ)将频率视为概率,现从该校大量学生中用随机抽样的方法每次抽取1人,共抽取5次,记被抽取的5人中的“读书迷”的人数为X.若每次抽取的结果是相互独立的,求X的数学期望EX和方差DX.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)-1,并且当x>0时f(x)>1,
(1)求证:f(x)在R上是增函数;
(2)若f(2)=3,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点P(4,1)作圆C:(x-1)2+y2=1的两条切线,切点分别为A,B,则直线AB的方程为(  )
A.3x-y-4=0B.4x+y-4=0C.4x-y-4=0D.3x+y-4=0

查看答案和解析>>

同步练习册答案