精英家教网 > 高中数学 > 题目详情
3.(1)设a>b>0,试比较$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$与$\frac{a-b}{a+b}$的大小.
(2)设不等式x2-4x+3<0的解集为A,不等式x2+x-6>0的解集为B.若不等式x2+ax+b<0的解集为A∩B,求a,b的值.

分析 (1)利用作差法判断$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$与$\frac{a-b}{a+b}$的大小即可;
(2)解不等式,求出A、B以及A∩B,再由根与系数关系,求出a、b的值.

解答 解:(1)a>b>0时,
$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$-$\frac{a-b}{a+b}$=$\frac{2ab(a-b)}{{(a}^{2}{+b}^{2})(a+b)}$>0,
∴$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$>$\frac{a-b}{a+b}$;
(2)解不等式x2-4x+3<0,得A={x|1<x<3},
解不等式x2+x-6>0,得B={x|x<-3,或x>2};
∴A∩B={x|2<x<3},
∴不等式x2+ax+b<0的解集为(2,3);
由根与系数关系得
$\left\{\begin{array}{l}{-a=2+3}\\{b=2×3}\end{array}\right.$;
 解得a=-5,b=6.

点评 本题考查了作差法比较大小的应用问题,也考查了不等式的解法与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.如图中的程序框图描述的是“欧几里得辗转相除法”的算法.若输入m=37,n=5,则输出m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,内角A,B,C的对边边长分别为a,b,c,且a,b,c成等比数列.
(1)若sinA,sinB,sinC 成等差数列,试判断△ABC的形状;
(2)若B=30°,S△ABC=$\frac{3}{2}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设函数f(x)=$\frac{1-a}{2}$x2+ax-lnx(a>1).若对任意的a∈(3,4)和任意的x1,x2∈[1,2],恒有$\frac{{a}^{2}-1}{2}$m+ln2>|f(x1)-f(x2)|成立,则实数m的取值范围是m≥$\frac{1}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若二项式(3x2-$\frac{2}{\root{3}{x}}$)n(n∈N*)展开式中含有常数项,则n的最小取值是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{{\begin{array}{l}{x^2}\\{-{x^2}}\end{array}}\right.\begin{array}{l}{(x≥0)}\\{(x<0)}\end{array}$,若对任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是[$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若(5x-4)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等于(  )
A.5B.25C.-5D.-25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.袋中装有1个红球和4个黑球,这些球除颜色外完全相同.
(1)从袋中任意摸出1个球,摸出红球的概率是多少?
(2)现在有放回地摸5次,“恰摸出1次红球”的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在一次口试中,要从10道题中随机抽出3道题进行回答,答对了其中2道题就获得及格,某考生会回答10道题中的6道题,那么他(她)获得及格的概率是多少?

查看答案和解析>>

同步练习册答案