精英家教网 > 高中数学 > 题目详情
18.若二项式(3x2-$\frac{2}{\root{3}{x}}$)n(n∈N*)展开式中含有常数项,则n的最小取值是(  )
A.4B.5C.6D.7

分析 利用二项展开式的通项公式求出展开式的通项,令x的指数为0方程有解.由于n,r都是整数求出最小的正整数n.

解答 解:展开式的通项为Tr+1=3n-r(-2)rCnr${x}^{2n-\frac{7r}{3}}$
令2n-$\frac{7r}{3}$=0,据题意此方程有解,
∴n=$\frac{7r}{6}$,当r=6时,n最小为7.
故选:D.

点评 本题考查利用二项展开式的通项公式解决二项展开式的特定项问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.下列说法中,正确的个数为(  )
(1)$\overrightarrow{AB}$+$\overrightarrow{MB}$+$\overrightarrow{BC}$+$\overrightarrow{OM}$+$\overrightarrow{CO}$=$\overrightarrow{AB}$;
(2)已知向量$\overrightarrow{a}$=(6,2)与$\overrightarrow{b}$=(-3,k)的夹角是钝角,则k的取值范围是(-∞,9);
(3)向量$\overrightarrow{{e}_{1}}$=(2,-3),$\overrightarrow{{e}_{2}}$=($\frac{1}{2}$,-$\frac{3}{4}$)能作为平面内所有向量的一组基底;
(4)若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|.
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若动点P在直线l1:x-y+1=0上,动点Q在直线l2:x+y-7=0上,且|PQ|=2,设线段PQ的中点为M(x0,y0),则x02+y02的取值范围是[16,36].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人作为样本,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(1)从样本100人中抽取日平均生产件数[60,70)的工人,求“25周岁以上组”和“25周岁以下组”工人的各抽取多少人?
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=mx-alnx-m,g(x)=$\frac{ex}{e^x}$(e=2.71828…),其中m,a均为实数.
(1)求g(x)的极值;
(2)设a=2,若对?给定的x0∈(0,e],在区间(0,e]上总存在t1,t2(t1≠t2)使得f(t1)=f(t2)=g(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设a>b>0,试比较$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$与$\frac{a-b}{a+b}$的大小.
(2)设不等式x2-4x+3<0的解集为A,不等式x2+x-6>0的解集为B.若不等式x2+ax+b<0的解集为A∩B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{e^x}{x+a}$,(a<3且a∈Z),且函数f(x)在区间(-1,0)上单调递增,定义在R上的函数g(x)=(x+b)(x2-8),且函数g(x)在x=1处的切线与直线x-y=0垂直.
(Ⅰ)求函数f(x)与函数g(x)的解析式;
(Ⅱ)已知函数F(x)=$\left\{\begin{array}{l}f(x)•g(x),x≠-2\\-4{e^{-2}},x=-2\end{array}$,试问:是否存在实数a,b,其中[a,b]⊆(-∞,4],使得函数F(x)的值域也为[a,b]?若能,请求出相应的a、b;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x+1
(1)求函数f(x)的单调递增区间;
(2)若f($\frac{θ}{2}$+$\frac{π}{12}$)=$\frac{5}{6}$,θ∈(0,$\frac{π}{2}$),求cos(θ+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在(1+x)n的展开式中,第9项为(  )
A.C${\;}_{n}^{9}$x9B.C${\;}_{n}^{8}$x8C.C${\;}_{n}^{9}$xn-9D.C${\;}_{n}^{8}$xn-8

查看答案和解析>>

同步练习册答案