精英家教网 > 高中数学 > 题目详情
14.在△ABC中,内角A,B,C的对边边长分别为a,b,c,且a,b,c成等比数列.
(1)若sinA,sinB,sinC 成等差数列,试判断△ABC的形状;
(2)若B=30°,S△ABC=$\frac{3}{2}$,求b.

分析 (1)通过a、b、c成等差数列可得b=$\frac{a+c}{2}$,通过sinA,sinB,sinC成等比数列并利用正弦定理可得b×b=a×c,进而计算可得结论;
(2)通过S△ABC=$\frac{1}{2}•ac•sinB$可得ac=6,结合2b=a+c并利用余弦定理计算即得结论.

解答 解:(1)结论:△ABC为等边三角形.
理由如下:
∵a,b,c成等差数列,
∴2b=a+c,∴b=$\frac{a+c}{2}$,
∵sinA,sinB,sinC成等比数列,
∴sinB×sinB=sinA×sinC,
又∵$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$,
∴b×b=a×c,
∴($\frac{a+c}{2}$)2=ac,
即:(a-c)2=0,
∴a=c=$\frac{a+c}{2}$=b,
∴△ABC为等边三角形;
(2)∵B=30°,S△ABC=$\frac{3}{2}$,
∴S△ABC=$\frac{1}{2}•ac•sinB$=$\frac{1}{2}$ac•sin30°=$\frac{ac}{4}$=$\frac{3}{2}$,
∴ac=6,
又∵2b=a+c,
∴cosB=$\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$
=$\frac{(a+c)^{2}-2ac-{b}^{2}}{2ac}$
=$\frac{4{b}^{2}-2ac-{b}^{2}}{2ac}$
=$\frac{3{b}^{2}-2ac}{2ac}$
=$\frac{3{b}^{2}-12}{12}$
=cos30°
=$\frac{\sqrt{3}}{2}$,
∴b=$\sqrt{3}+1$或-($\sqrt{3}+1$)(舍),
∴b=$\sqrt{3}+1$.

点评 本题是一道数列与三角函数的综合题,涉及等比、等差数列,正弦、余弦定理,三角形面积公式等基础知识,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.在某校对30名女生与80名男生进行是否有懒惰习惯进行调查,发现女生中有15人有懒惰习惯,男生中有50人有懒惰习惯.
(1)请根据上述数据填写2×2列联表:
懒惰不懒惰总计
总计
(2)能否判断懒惰是否与性别有关.(参考公式:k=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$)
临界值表
P(K2≥k00.500.400.250.150.100.05 0.025 0.0100.0050.001 
k00.4550.7081.3232.0722.706 3.8415.0246.635 7.87910.828 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=alnx-2x,g(x)=x2-(2-a)x-(2-a)lnx,其中a∈R.
(1)判断f(x)单调性;
(2)若g(x)在其定义域内为增函数,求正实数a的取值范围;
(3)若F(x)=f(x)-g(x)函数存在两个零点m、n,且2x0=m+n,问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}的前n项和为Sn,首项a1=-$\frac{2}{3}$,且满足Sn+$\frac{1}{S_n}+2={a_n}$(n≥2),则S2015等于(  )
A.$-\frac{2013}{2014}$B.$-\frac{2014}{2015}$C.$-\frac{2015}{2016}$D.$-\frac{2016}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若动点P在直线l1:x-y+1=0上,动点Q在直线l2:x+y-7=0上,且|PQ|=2,设线段PQ的中点为M(x0,y0),则x02+y02的取值范围是[16,36].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*
(1)求数列{an}的通项公式;
(2)记数列{bn}满足an=4log2bn+3,求数列{an+bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关.现采用分层抽样的方法,从中抽取了100名工人作为样本,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,在将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100)分别加以统计,得到如图所示的频率分布直方图.
(1)从样本100人中抽取日平均生产件数[60,70)的工人,求“25周岁以上组”和“25周岁以下组”工人的各抽取多少人?
(2)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2的列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
附:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
P(x2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.(1)设a>b>0,试比较$\frac{{a}^{2}-{b}^{2}}{{a}^{2}+{b}^{2}}$与$\frac{a-b}{a+b}$的大小.
(2)设不等式x2-4x+3<0的解集为A,不等式x2+x-6>0的解集为B.若不等式x2+ax+b<0的解集为A∩B,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)的定义域为[0,1],求下列函数的定义域:
(1)f(x2);
(2)f($\sqrt{x}$-1)

查看答案和解析>>

同步练习册答案