分析 作出不等式组对应的平面区域,利用斜率公式结合数形结合进行求解即可.
解答
解:作出不等式组对应的平面区域如图,
由$z=\frac{y}{x-3}=\frac{y-0}{x-3}$,由斜率公式可知,其几何意义是点(x,y)与点(3,0)所在直线的斜率,
故而由图可知,${z_{min}}={k_{AI}}=-\frac{1}{3}$,${z_{max}}={k_{BI}}=\frac{1}{3}$,
故而z的取值范围是$[{-\frac{1}{3},\;\;\frac{1}{3}}]$.
故答案为:$[{-\frac{1}{3},\;\;\frac{1}{3}}]$.
点评 本题主要考查线性规划和直线斜率的应用,利用数形结合是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 10 | D. | 20 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{4}$ | B. | $\frac{4}{5}$ | C. | $-\frac{5}{4}$ | D. | $-\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com