精英家教网 > 高中数学 > 题目详情
14.南北朝时期的数学古籍《张邱建算经》有如下一道题:“今有十等人,每等一人,宫赐金以等次差(即等差)降之,上三人,得金四斤,持出;下四人后入得三斤,持出;中间三人未到者,亦依等次更给.问:每等人比下等人多得几斤?”(  )
A.$\frac{4}{39}$B.$\frac{7}{78}$C.$\frac{7}{76}$D.$\frac{5}{81}$

分析 根据题意将毎等人所得的黄金斤数构造等差数列,设公差为d,根据题意和等差数列的前n项和公式列出方程组,求出公差d即可得到答案.

解答 解:设第十等人得金a1斤,第九等人得金a2斤,以此类推,第一等人得金a10斤,
则数列{an}构成等差数列,设公差为d,则每一等人比下一等人多得d斤金,
由题意得$\left\{\begin{array}{l}{{a}_{1}+{a}_{2}+{a}_{3}+{a}_{4}=3}\\{{a}_{8}+{a}_{9}+{a}_{10}=4}\end{array}\right.$,即$\left\{\begin{array}{l}{4{a}_{1}+6d=3}\\{3{a}_{1}+24d=4}\end{array}\right.$,
解得d=$\frac{7}{78}$,
∴每一等人比下一等人多得$\frac{7}{78}$斤金.
故选:B.

点评 本题考查等差数列的定义,前n项和公式在实际问题中的应用,以及方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若x,y∈R,且x2+y2=4,那么x2-2$\sqrt{3}$xy-y2的最大值为(  )
A.2B.2$\sqrt{2}$C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,既是偶函数,又在(1,+∞)上单调递增的为(  )
A.y=ln(x2+1)B.y=cosxC.y=x-lnxD.y=($\frac{1}{2}$)|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知D为△ABC的边BC的中点,△ABC所在平面内有一个点P,满足$\overrightarrow{PA}$=$\overrightarrow{PB}$+$\overrightarrow{PC}$,则$\frac{|\overrightarrow{PD}|}{|\overrightarrow{AD}|}$的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线y=k(x+2)与抛物线y2=8x交于A、B两点,F为抛物线的焦点,则直线FA与直线FB的斜率之和等于(  )
A.-4B.4C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市为了缓解交通压力,提倡低碳环保,鼓励市民乘坐公共交通系统出行.为了更好地保障市民出行,合理安排运力,有效利用公共交通资源合理调度,在某地铁站点进行试点调研市民对候车时间的等待时间(候车时间不能超过20分钟),以便合理调度减少候车时间,使市民更喜欢选择公共交通.为此在该地铁站的一些乘客中进行调查分析,得到如下统计表和各时间段人数频率分布直方图:
分组等待时间(分钟)人数
第一组[0,5)10
第二组[5,10)a
第三组[10,15)30
第四组[15,20)10
(Ⅰ)求出a的值;要在这些乘客中用分层抽样的方法抽取10人,在这10个人中随机抽取3人至少一人来自第二组的概率;
(Ⅱ)从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设a=cos420°,函数f(x)=ax,则f(log2$\frac{1}{6}$)的值等于6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}中公差d≠0,有a1+a4=14,且a1,a2,a7成等比数列.
(1)求{an}的通项公式an与前n项和公式Sn
(2)令bn=$\frac{{S{\;}_n}}{n+k}$,若{bn}是等差数列,求数列{$\frac{1}{{{b_n}{b_{n+1}}}}$}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.正四面体ABCD的外接球的半径为2,过棱AB作该球的截面,则截面面积的最小值为(  )
A.$\frac{2π}{3}$B.$\frac{4π}{3}$C.$\frac{8π}{3}$D.

查看答案和解析>>

同步练习册答案