分析 (1)由$\sqrt{a}+\frac{1}{{\sqrt{a}}}=3$,可得$a+\frac{1}{a}=7$,${a}^{2}+\frac{1}{{a}^{2}}$+2=49,进而得出.
(2)利用对数的运算性质即可得出.
解答 解:(1)∵$\sqrt{a}+\frac{1}{{\sqrt{a}}}=3$,∴$a+\frac{1}{a}=7$,∴${a}^{2}+\frac{1}{{a}^{2}}$+2=49,
又${(\root{4}{a}+\frac{1}{{\root{4}{a}}})^2}=\sqrt{a}+\frac{1}{{\sqrt{a}}}+2=5$,∴$\root{4}{a}+\frac{1}{{\root{4}{a}}}=\sqrt{5}$,
∴$\frac{{({a^2}+\frac{1}{a^2}+3)}}{{\root{4}{a}+\frac{1}{{\root{4}{a}}}}}=10\sqrt{5}$.
(2)$[{(1-{log_6}3)^2}+{log_6}2•{log_6}18]•{log_4}6$=$[{({log_6}2)^2}+{log_6}2•(2{log_6}3+{log_6}2)]•{log_4}6$
=log62(log62+2log63+log62)×log46
=2log62•log46=log64•log46=1.
点评 本题考查了指数与对数的运算性质、乘法公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4和1 | B. | 4和0 | C. | 3和1 | D. | 3和0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x2+(y-4)2=25 | B. | (x-4)2+y2=25 | C. | x2+(y-4)2=25 | D. | (x+4)2+y2=25 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com