精英家教网 > 高中数学 > 题目详情
7.若关于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集为R,则k的范围为[1,9).

分析 关于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集为R,x2+x+1=$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$>0,转化为(k-1)x2+(k-1)x+2>0的解集为R.对k分类讨论,利用一元二次不等式的解集与判别式的关系即可得出.

解答 解:∵关于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集为R,x2+x+1=$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$>0,
∴(k-1)x2+(k-1)x+2>0的解集为R.
当k=1时,2>0恒成立,因此k=1满足条件.
当k≠0时,可得$\left\{\begin{array}{l}{k-1>0}\\{△=(k-1)^{2}-8(k-1)<0}\end{array}\right.$,解得1<k<9,
综上可得:k的范围为[1,9).
故答案为:[1,9).

点评 本题考查了恒成立问题等价转化方法、“三个二次的关系”、不等式的解集与判别式的关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x).设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],则sin(2α-$\frac{π}{6}$)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.表示正整数集的是(  )
A.QB.NC.N*D.Z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知中心在原点的椭圆C的两个焦点和椭圆C1:2x2+3y2=72的两个焦点是一个正方形的四个顶点,且椭圆C过点A(${\sqrt{3}$,-2).
(1)求椭圆C的标准方程;
(2)已知P是椭圆C上的任意一点,Q(0,t),求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x<0,-1<y<0,用不等号将x,xy,xy2从大到小排列得xy>xy2>x .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设全集U=R.
(1)解关于x的不等式|x-1|+a-1>0(a∈R);
(2)记A为(1)中不等式的解集,B为不等式组$\left\{\begin{array}{l}{\frac{3x-5}{x+4}≤1}\\{{x}^{2}-x+1≥0}\end{array}\right.$的整数解集,若(∁UA)∩B恰有三个元素,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(1)已知$\sqrt{a}$+$\frac{1}{\sqrt{a}}$=3,求$\frac{({a}^{2}+\frac{1}{{a}^{2}}+3)}{\root{4}{a}+\frac{1}{\root{4}{a}}}$的值;
(2)计算[(1-log63)2+log62×log618]•log46.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.O为坐标原点,F为抛物线C:y2=4$\sqrt{2}$x的焦点,P为C上一点,若|PF|=3$\sqrt{2}$,则△POF的面积(  )
A.2B.2$\sqrt{2}$C.2$\sqrt{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,a1=3,a2=5,{an}的前n项和Sn,且满足Sn+Sn-2=2Sn-1+2n-1(n≥3).
(1)试求数列{an}的通项公式;
(2)令bn=$\frac{{2}^{n-1}}{{a}_{n}•{a}_{n+1}}$,Tn是数列{bn}的前n项和,证明:Tn<$\frac{1}{6}$;
(3)证明:对任意给定的m∈(0,$\frac{1}{6}$),均存在n0∈N+,使得当n≥n0时,(2)中的Tn>m恒成立.

查看答案和解析>>

同步练习册答案