精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x).设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],则sin(2α-$\frac{π}{6}$)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

分析 进行数量积的运算,并化简即可得出f(x)=$2sin(2x+\frac{π}{6})+1$,这样根据$f(α-\frac{π}{3})=2$即可得出cos2α=$-\frac{1}{2}$,而由α的范围便可得出2α的范围,从而求出α,这样便可求出$sin(2α-\frac{π}{6})$的范围.

解答 解:f(x)=$\overrightarrow{a}•\overrightarrow{b}$
=$2co{s}^{2}x+\sqrt{3}sin2x$
=$1+cos2x+\sqrt{3}sin2x$
=$2sin(2x+\frac{π}{6})+1$;
∴$f(α-\frac{π}{3})=2sin(2α-\frac{π}{2})+1$=-2cos2α+1=2;
∴$cos2α=-\frac{1}{2}$;
∵$α∈[\frac{π}{2},π]$;
∴2α∈[π,2π];
∴$2α=π+\frac{π}{3}$;
∴$sin(2α-\frac{π}{6})=sin(π+\frac{π}{6})=-\frac{1}{2}$.
故选C.

点评 考查向量数量积的坐标运算,二倍角的余弦公式,以及两角和的正弦公式,三角函数的诱导公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若定义在R上的函数f(x)满足f(x)=f(-x),且f(x)在(0,+∞)上是减函数,又f(-3)=1,则不等式f(x)<1的解集为(  )
A.{x|x>3或-3<x<0}B.{x|x<3或0<x<-3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)解不等式:|x-1|+|x|<4;
(2)已知a>2,求证:?x∈R,|ax-2|+a|x-2|>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,三边长AB=7,BC=5,AC=6,则cosB的值等于(  )
A.$\frac{19}{35}$B.-$\frac{14}{35}$C.-$\frac{18}{35}$D.-$\frac{19}{35}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=1-$\frac{1}{2}$x,则方程f(x)=log8|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=($\sqrt{3}$xinωx+cosωx)cosωx-$\frac{1}{2}$,其中ω>0,若f(x)的最小正周期为4π.
(1)求函数f(x)的单调递增区间;
(2)锐角三角形ABC中,(2a-c)cosB=bcosC,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,已知a4=7,a3+a6=16,an=31,则n为(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明:数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于x的不等式$\frac{(k-1){x}^{2}+(k-1)x+2}{{x}^{2}+x+1}$>0的解集为R,则k的范围为[1,9).

查看答案和解析>>

同步练习册答案