精英家教网 > 高中数学 > 题目详情
12.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=1-$\frac{1}{2}$x,则方程f(x)=log8|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

分析 由题意可得偶函数y=f(x)为周期为4的函数,作出函数的图象,判断的交点的个数即为所求.

解答 解:∵函数y=f(x)为
偶函数,且满足f(x+2)=-f(x),
∴f(x+4)=f(x+2+2)=-f(x+2)=f(x),
∴偶函数y=f(x)
为周期为4的函数,
由x∈[0,2]时,
f(x)=1-$\frac{1}{2}$x,可作出函数f(x)在[-10,10]的图象,
同时作出函数f(x)=log8|x|在[-10,10]的图象,交点个数即为所求.
数形结合可得交点个为8,
故选:D.

点评 本题考查函数的周期性和零点,数形结合是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数y=tan(2x+$\frac{π}{3}$)的图象的一个对称中心的坐标为(  )
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{4}$,0)D.($\frac{2π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{2}$,b=2,B=45°,则角A的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程;
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若直线$\frac{x}{a}$+$\frac{y}{b}$=1(a>0,b>0)过点(2,2),则a+b的最小值等于(  )
A.2B.3C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{b}$=(1,sin2x).设f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,若f(α-$\frac{π}{3}$)=2,α∈[$\frac{π}{2}$,π],则sin(2α-$\frac{π}{6}$)=(  )
A.-$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.-$\frac{1}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2-ax+2lnx(其中a是实数).
(1)求f(x)的单调区间;
(2)若设2(e+$\frac{1}{e}$)<a<$\frac{20}{3}$,且f(x)有两个极值点x1,x2(x1<x2),求f(x1)-f(x2)取值范围.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.9${\;}^{-\frac{3}{2}}}$=(  )
A.9B.2C.$\frac{1}{27}$D.$-\frac{1}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知x<0,-1<y<0,用不等号将x,xy,xy2从大到小排列得xy>xy2>x .

查看答案和解析>>

同步练习册答案