精英家教网 > 高中数学 > 题目详情
1.9${\;}^{-\frac{3}{2}}}$=(  )
A.9B.2C.$\frac{1}{27}$D.$-\frac{1}{9}$

分析 直接根据指数幂的运算性质计算即可.

解答 解:9${\;}^{-\frac{3}{2}}}$=${3}^{2×(-\frac{3}{2}})$=$\frac{1}{27}$,
故选:C

点评 本题考查了指数幂的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知直线l⊥平面α,直线m∥平面β,则下列命题正确的是(  )
A.若α⊥β,则l∥mB.若l⊥m,则α∥βC.若l∥β,则m⊥αD.若α∥β,则 l⊥m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若偶函数y=f(x),x∈R,满足f(x+2)=-f(x),且x∈[0,2]时,f(x)=1-$\frac{1}{2}$x,则方程f(x)=log8|x|在[-10,10]内的根的个数为(  )
A.12B.10C.9D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等差数列{an}中,已知a4=7,a3+a6=16,an=31,则n为(  )
A.13B.14C.15D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=3x,f(a+2)=27,函数g(x)=λ•2ax-4x的定义域为[0,2].
(1)求a的值;
(2)若λ=2,试判断函数g(x)在[0,2]上的单调性,并加以证明;
(3)若函数g(x)的最大值是$\frac{1}{3}$,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,Sn+1=4an+1,设bn=an+1-2an.证明:数列{bn}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示的三幅图中,图(1)所示的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图如图(2)(3)所示(单位:cm).
(1)按照画三视图的要求将右侧三视图补充完整.
(2)按照给出的尺寸,求该多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=(a-1)(ax-a-x)(0<a<1).
(Ⅰ)判断f(x的奇偶性;
(Ⅱ)用定义证明f(x)为R上的增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.圆心坐标为(4,0)且经过点(0,3)的圆的方程是(  )
A.x2+(y-4)2=25B.(x-4)2+y2=25C.x2+(y-4)2=25D.(x+4)2+y2=25

查看答案和解析>>

同步练习册答案