精英家教网 > 高中数学 > 题目详情
11.已知直线l⊥平面α,直线m∥平面β,则下列命题正确的是(  )
A.若α⊥β,则l∥mB.若l⊥m,则α∥βC.若l∥β,则m⊥αD.若α∥β,则 l⊥m

分析 A中l与m位置不确定,B中α与β可能相交,C中m与α的位置不确定,D正确.

解答 解:对于A若α⊥β,直线l⊥平面α,直线m∥平面β,则l与m可能平行、可能相交也可能异面,故A不正确;
对于B,若l⊥m,直线l⊥平面α,直线m∥平面β,则α与β可能平行也可能相交,故B不正确;
对于C,m与α的位置不确定
对于D,若α∥β,直线l⊥平面α,则直线l⊥平面β,又∵直线m∥平面β,则l⊥m,故D正确;
故选:D.

点评 本题考查的知识点是空间平面与平面关系的判定及直线与直线关系的确定,熟练掌握空间线面关系的几何特征是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.下列函数中,是偶函数且在(0,+∞)上为增函数的是(  )
A.y=cosxB.y=-x2+1C.y=log2|x|D.y=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数y=tan(2x+$\frac{π}{3}$)的图象的一个对称中心的坐标为(  )
A.($\frac{π}{12}$,0)B.($\frac{π}{6}$,0)C.($\frac{π}{4}$,0)D.($\frac{2π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=ln(1+|x|)-$\frac{1}{1+{x}^{2}}$,则使得f(x)>f(2x-3)成立的取值范围是(  )
A.(-∞,1)∪(3,+∞)B.(-∞,3)C.(1,3)D.(3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\frac{x-1}{x}$-lnx.
(1)求f(x)的递增区间;
(2)证明:当x∈(0,1)时,x-1<xlnx;
(3)设c∈(0,1),证明:当x∈(0,1)时,1+(c-1)x>cx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,内角A,B,C的对边分别是a,b,c,若sinB=2sinA,且△ABC的面积为a2sinB,则cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{2}$,b=2,B=45°,则角A的大小为30°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程;
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足|2$\overrightarrow{OA}$+$\overrightarrow{OB}$|=|2$\overrightarrow{OA}$-$\overrightarrow{OB}$|,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.9${\;}^{-\frac{3}{2}}}$=(  )
A.9B.2C.$\frac{1}{27}$D.$-\frac{1}{9}$

查看答案和解析>>

同步练习册答案