精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥P一ABCD中,平面PAB⊥平面ABCD, AB⊥BC, AD//BC, AD=3,PA=BC=2AB=2,

PB=

(Ⅰ)求证:BC⊥PB;

(Ⅱ)求二面角P一CD一A的余弦值;

(Ⅲ)若点E在棱PA上,且BE//平面PCD,求线段BE的长.

【答案】(1)见解析;(2) ;(3) .

【解析】试题分析:根据面面垂直的性质定理,证得平面进而证得所以

Ⅱ)建立空间直角坐标系得到向量的坐标,再得到平面的一个法向量为,利用向量的夹角公式,即可得到二面角的余弦值;

由点在棱所以,得到所以

再根据与平面的法向量的数量积等于零,即可求解的值

试题解析:

证明:因为平面⊥平面

且平面平面

因为,且平面

所以平面

因为平面

所以

解:在中,因为

所以,所以

所以,建立空间直角坐标系,如图所示

所以

易知平面的一个法向量为

设平面的一个法向量为

, 即

设二面角的平面角为,可知为锐角

即二面角的余弦值为

(Ⅲ)解:因为点在棱所以

因为

所以

又因为平面 为平面的一个法向量

所以,所以

所以所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角梯形中,,如图1.把沿翻折,使得平面平面,如图2

(Ⅰ)求证:

(Ⅱ)若点为线段中点,求点到平面的距离;

(Ⅲ)在线段上是否存在点,使得与平面所成角为?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司对营销人员有如下规定:

①年销售额 (万元)在8万元以下,没有奖金;

②年销售额 (万元), 时,奖金为万元,且 ,且年销售额越大,奖金越多;

③年销售额超过64万元,按年销售额的10%发奖金.

(1)求奖金y关于x的函数解析式;

(2)若某营销人员争取奖金 (万元),则年销售额 (万元)在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求曲线处的切线方程;

(2)当时,判断 上的单调性,并说明理由;

(3)当时,求证: ,都有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若,求函数的单调区间;

(Ⅲ)若,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在椭圆 上, 是椭圆的一个焦点.

)求椭圆的方程;

)椭圆C上不与点重合的两点 关于原点O对称,直线 分别交轴于 两点.求证:以为直径的圆被直线截得的弦长是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】济南新旧动能转换先行区,承载着济南从“大明湖时代”迈向“黄河时代”的梦想,肩负着山东省新旧动能转换先行先试的重任,是全国新旧动能转换的先行区.先行区将以“结构优化质量提升”为目标,通过开放平台汇聚创新要素,坚持绿色循环保障持续发展,建设现代绿色智慧新城.2019年某智能机器人制造企业有意落户先行区,对市场进行了可行性分析,如果全年固定成本共需2000(万元),每年生产机器人(百个),需另投人成本(万元),且,由市场调研知,每个机器人售价6万元,且全年生产的机器人当年能全部销售完.

(1)求年利润(万元)关于年产量(百个)的函数关系式;(利润=销售额-成本)

(2)该企业决定:当企业年最大利润超过2000(万元)时,才选择落户新旧动能转换先行区.请问该企业能否落户先行区,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数

1)若关于的方程的解集中恰有一个元素,求的值;

2)设,若对任意,函数在区间上的最大值与最小值的差不超过,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 满足: 的前项和为并规定.定义集合

(Ⅰ)对数列 ,求集合

(Ⅱ)若集合 ,证明:

(Ⅲ)给定正整数对所有满足的数列,求集合的元素个数的最小值.

查看答案和解析>>

同步练习册答案